# -*- coding: utf-8 -*-
#==========================================================#
#Last Updated - June 2018
#@author: z5025317 Valentin Heimhuber
#code for creating climate prioritization plots for NARCLIM variables.
#Inputs: Uses CSV files that contain all 12 NARCLIM model runs time series for 1 grid cell created with: P1_NARCliM_NC_to_CSV_CCRC_SS.py
#==========================================================#
#Load packages
#==========================================================#
import numpy as np
import os
import pandas as pd
import glob
import matplotlib
import matplotlib . pyplot as plt
from datetime import datetime
from datetime import timedelta
from matplotlib . backends . backend_pdf import PdfPages
from ggplot import *
matplotlib . style . use ( ' ggplot ' )
# import own modules
# Set working direcotry (where postprocessed NARClIM data is located)
os . chdir ( ' C:/Users/z5025317/OneDrive - UNSW/WRL_Postdoc_Manual_Backup/WRL_Postdoc/Projects/Paper#1/Analysis/Code ' )
import climdata_fcts as fct
#==========================================================#
# Set working direcotry (where postprocessed NARClIM data is located)
os . chdir ( ' C:/Users/z5025317/OneDrive - UNSW/WRL_Postdoc_Manual_Backup/WRL_Postdoc/Projects/Paper#1/ ' )
#==========================================================#
#==========================================================#
#set input parameters
Base_period_start = ' 1990-01-01 '
Base_period_end = ' 2080-01-01 ' #use last day that's not included in period as < is used for subsetting
Estuary = ' HUNTER ' # 'Belongil'
Clim_var_type = " pracc " # '*' will create pdf for all variables in folder "pracc*|tasmax*"
plot_pdf = ' yes '
delta_csv = ' yes '
Stats = ' dailymax '
Version = ' V4 '
#==========================================================#
#==========================================================#
#set directory path for output files
output_directory = ' Output/Case_Study_1/ ' + Estuary
#output_directory = 'J:/Project wrl2016032/NARCLIM_Raw_Data/Extracted'
if not os . path . exists ( output_directory ) :
os . makedirs ( output_directory )
print ( ' ------------------------------------------- ' )
print ( " output directory folder didn ' t exist and was generated " )
print ( ' ------------------------------------------- ' )
#==========================================================#
#==========================================================#
Estuary_Folder = glob . glob ( ' ./Data/NARCLIM_Site_CSVs/ ' + Estuary + ' * ' )
Clim_Var_CSVs = glob . glob ( Estuary_Folder [ 0 ] + ' / ' + Clim_var_type + ' * ' )
#==========================================================#
#==========================================================#
#read CSV files and start analysis
#==========================================================#
#for clim_var_csv_path in Clim_Var_CSVs:
clim_var_csv_path = Clim_Var_CSVs [ 0 ]
Filename = os . path . basename ( os . path . normpath ( clim_var_csv_path ) )
Clim_var_type = Filename . split ( ' _ ' , 1 ) [ 0 ]
print ( clim_var_csv_path )
Full_df = pd . read_csv ( clim_var_csv_path , index_col = 0 , parse_dates = True )
#pandas datestamp index to period (we don't need the 12 pm info in the index (daily periods are enough))
Full_df . index = Full_df . index . to_period ( ' D ' )
Full_df = Full_df . drop ( columns = [ ' period ' ] )
Ncols_df = len ( Full_df )
#check data types of columns
#Full_df.dtypes
#==========================================================#
#substract a constant from all values to convert from kelvin to celcius (temp)
if Clim_var_type == ' tasmean ' or Clim_var_type == ' tasmax ' :
Full_df = Full_df . iloc [ : , 0 : ( Ncols_df - 1 ) ] - 273.15
if Clim_var_type == ' evspsblmean ' or Clim_var_type == ' potevpmean ' :
Full_df = Full_df . iloc [ : , 0 : ( Ncols_df - 1 ) ] * 60 * 60 * 24
Fdf_1900_2080 = Full_df
#==========================================================#
#Subset the data to the minimum base period and above (used to set the lenght of the present day climate period)
#Fdf_1900_2080 = Full_df.loc[(Full_df.index >= Base_period_start) & (Full_df.index < Base_period_end)] # not necessary if not using reanalysis models for base period
#==========================================================#
#Aggregate daily df to annual time series
if ( Clim_var_type == ' pracc ' or Clim_var_type == ' evspsblmean ' or Clim_var_type == ' potevpmean '
or Clim_var_type == ' pr1Hmaxtstep ' or Clim_var_type == ' wss1Hmaxtstep ' ) :
if ( Stats == ' maxdaily ' ) :
Fdf_1900_2080_annual = Fdf_1900_2080 . resample ( ' A ' ) . max ( )
Fdf_1900_2080_annual = Fdf_1900_2080_annual . replace ( 0 , np . nan )
Fdf_Seas_means = Fdf_1900_2080 . resample ( ' Q-NOV ' ) . max ( ) #seasonal means
Fdf_Seas_means = Fdf_Seas_means . replace ( 0 , np . nan )
else :
Fdf_1900_2080_annual = Fdf_1900_2080 . resample ( ' A ' ) . sum ( )
Fdf_1900_2080_annual = Fdf_1900_2080_annual . replace ( 0 , np . nan )
Fdf_Seas_means = Fdf_1900_2080 . resample ( ' Q-NOV ' ) . sum ( ) #seasonal means
Fdf_Seas_means = Fdf_Seas_means . replace ( 0 , np . nan )
else :
if ( Stats == ' maxdaily ' ) :
Fdf_1900_2080_annual = Fdf_1900_2080 . resample ( ' A ' ) . max ( )
Fdf_1900_2080_annual = Fdf_1900_2080_annual . replace ( 0 , np . nan )
Fdf_Seas_means = Fdf_1900_2080 . resample ( ' Q-NOV ' ) . max ( ) #seasonal means
Fdf_Seas_means = Fdf_Seas_means . replace ( 0 , np . nan )
else :
Fdf_1900_2080_annual = Fdf_1900_2080 . resample ( ' A ' ) . mean ( )
Fdf_Seas_means = Fdf_1900_2080 . resample ( ' Q-NOV ' ) . mean ( ) #seasonal means
Fdf_1900_2080_means = Fdf_1900_2080 . mean ( )
#==========================================================#
#==========================================================#
#Select the 3 most representative models (min med and max difference betwen far future and present)
dfall , dfmin , dfmax , dfmed , Min_dif_mod_name , Med_dif_mod_name , Max_dif_mod_name = fct . select_min_med_max_dif_model ( Fdf_1900_2080 )
#==========================================================#
#==========================================================#
#create a dataframe that has 1 column for each of the three representative models
dfa = Fdf_1900_2080_annual . iloc [ : , [ 0 ] ]
dfa1 = Fdf_1900_2080_annual . iloc [ : , [ 0 , 3 , 6 ] ] . loc [ ( Fdf_1900_2080_annual . index > = ' 1990 ' ) & ( Fdf_1900_2080_annual . index < = ' 2009 ' ) ]
dfa1 . columns = [ Min_dif_mod_name [ : - 5 ] , Med_dif_mod_name [ : - 5 ] , Max_dif_mod_name [ : - 5 ] ]
dfa2 = Fdf_1900_2080_annual . iloc [ : , [ 1 , 4 , 7 ] ] . loc [ ( Fdf_1900_2080_annual . index > = ' 2020 ' ) & ( Fdf_1900_2080_annual . index < = ' 2039 ' ) ]
dfa2 . columns = [ Min_dif_mod_name [ : - 5 ] , Med_dif_mod_name [ : - 5 ] , Max_dif_mod_name [ : - 5 ] ]
dfa3 = Fdf_1900_2080_annual . iloc [ : , [ 2 , 5 , 8 ] ] . loc [ ( Fdf_1900_2080_annual . index > = ' 2060 ' ) & ( Fdf_1900_2080_annual . index < = ' 2079 ' ) ]
dfa3 . columns = [ Min_dif_mod_name [ : - 5 ] , Med_dif_mod_name [ : - 5 ] , Max_dif_mod_name [ : - 5 ] ]
dfall_annual = dfa1 . append ( dfa2 ) . append ( dfa3 )
#==========================================================#
#==========================================================#
#Create Deltas of average change for annual and seasonal basis
#==========================================================#
times = [ ' annual ' , ' DJF ' , ' MAM ' , ' JJA ' , ' SON ' ]
delta_all_df = pd . DataFrame ( )
for temp in times :
if temp == ' annual ' :
Mean_df = Fdf_1900_2080_annual . mean ( )
Column_names = [ ' near ' , ' far ' ]
if temp == ' DJF ' :
Mean_df = Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 1 ] . mean ( )
Column_names = [ ' DJF_near ' , ' DJF_far ' ]
if temp == ' MAM ' :
Mean_df = Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 2 ] . mean ( )
Column_names = [ ' MAM_near ' , ' MAM_far ' ]
if temp == ' JJA ' :
Mean_df = Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 3 ] . mean ( )
Column_names = [ ' JJA_near ' , ' JJA_far ' ]
if temp == ' SON ' :
Mean_df = Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 4 ] . mean ( )
Column_names = [ ' SON_near ' , ' SON_far ' ]
models = list ( Fdf_1900_2080_means . index )
newmodel = [ ]
type ( newmodel )
for each in models :
newmodel . append ( each [ : - 5 ] )
unique_models = set ( newmodel )
# calculate diff for each unique model
delta_NF_ensemble = [ ]
delta_FF_ensemble = [ ]
for unique_model in unique_models :
dfdiff = Mean_df . filter ( regex = unique_model )
type ( dfdiff )
delta_NF = dfdiff [ 1 ] - dfdiff [ 0 ]
delta_NF_ensemble . append ( delta_NF )
delta_FF = dfdiff [ 2 ] - dfdiff [ 1 ]
delta_FF_ensemble . append ( delta_FF )
delta_df1 = pd . DataFrame ( delta_NF_ensemble , index = unique_models )
delta_df2 = pd . DataFrame ( delta_FF_ensemble , index = unique_models )
delta_df = pd . concat ( [ delta_df1 , delta_df2 ] , axis = 1 )
#rename columns
delta_df . columns = Column_names
#add a row with medians and 10 and 90th percentiles
delta_df . loc [ ' 10th ' ] = pd . Series ( { Column_names [ 0 ] : np . percentile ( delta_df [ Column_names [ 0 ] ] , 10 ) , Column_names [ 1 ] : np . percentile ( delta_df [ Column_names [ 1 ] ] , 10 ) } )
delta_df . loc [ ' median ' ] = pd . Series ( { Column_names [ 0 ] : np . percentile ( delta_df [ Column_names [ 0 ] ] , 50 ) , Column_names [ 1 ] : np . percentile ( delta_df [ Column_names [ 1 ] ] , 50 ) } )
delta_df . loc [ ' 90th ' ] = pd . Series ( { Column_names [ 0 ] : np . percentile ( delta_df [ Column_names [ 0 ] ] , 90 ) , Column_names [ 1 ] : np . percentile ( delta_df [ Column_names [ 1 ] ] , 90 ) } )
#append df to overall df
delta_all_df = pd . concat ( [ delta_all_df , delta_df ] , axis = 1 )
#==========================================================#
if delta_csv == ' yes ' :
out_file_name = Estuary + ' _ ' + Clim_var_type + ' _ ' + Stats + ' _NARCliM_ensemble_changes.csv '
out_path = output_directory + ' / ' + out_file_name
delta_all_df . to_csv ( out_path )
#==========================================================#
#==========================================================#
#create a dataframe that has a single column for present day, near and far future for the (3 selected models)
Full_current_df = Fdf_1900_2080 . iloc [ : , range ( 0 , 3 ) ]
Full_current_df = Full_current_df . stack ( )
#nearfuture
Full_nearfuture_df = Fdf_1900_2080 . iloc [ : , range ( 3 , 6 ) ]
Full_nearfuture_df = Full_nearfuture_df . stack ( )
#farfuture
Full_farfuture_df = Fdf_1900_2080 . iloc [ : , range ( 6 , len ( Fdf_1900_2080 . columns ) ) ]
Full_farfuture_df = Full_farfuture_df . stack ( )
Summarized_df = pd . concat ( [ Full_current_df , Full_nearfuture_df ] , axis = 1 , ignore_index = True )
Summarized_df = pd . concat ( [ Summarized_df , Full_farfuture_df ] , axis = 1 , ignore_index = True )
Summarized_df . columns = [ ' present ' , ' near ' , ' far ' ]
#==========================================================#
#==========================================================#
#output some summary plot into pdf
#==========================================================#
if plot_pdf == ' yes ' :
plotcolours36 = [ ' darkolivegreen ' , ' turquoise ' , ' lightgreen ' , ' darkgreen ' , ' lightpink ' , ' slateblue ' , ' slategray ' , ' orange ' , ' tomato ' , ' peru ' , ' navy ' , ' teal ' ,
' darkolivegreen ' , ' turquoise ' , ' lightgreen ' , ' darkgreen ' , ' lightpink ' , ' slateblue ' , ' slategray ' , ' orange ' , ' tomato ' , ' peru ' , ' navy ' , ' teal ' ,
' darkolivegreen ' , ' turquoise ' , ' lightgreen ' , ' darkgreen ' , ' lightpink ' , ' slateblue ' , ' slategray ' , ' orange ' , ' tomato ' , ' peru ' , ' navy ' , ' teal ' ]
plotcolours36b = [ ' tomato ' , ' royalblue ' , ' mediumpurple ' , ' tomato ' , ' royalblue ' , ' mediumpurple ' , ' tomato ' , ' royalblue ' , ' mediumpurple ' , ' tomato ' , ' royalblue ' , ' mediumpurple ' ,
' tomato ' , ' royalblue ' , ' mediumpurple ' , ' tomato ' , ' royalblue ' , ' mediumpurple ' , ' tomato ' , ' royalblue ' , ' mediumpurple ' , ' tomato ' , ' royalblue ' , ' mediumpurple ' ,
' tomato ' , ' royalblue ' , ' mediumpurple ' , ' tomato ' , ' royalblue ' , ' mediumpurple ' , ' tomato ' , ' royalblue ' , ' mediumpurple ' , ' tomato ' , ' royalblue ' , ' mediumpurple ' ]
plotcolours12 = [ ' darkolivegreen ' , ' turquoise ' , ' lightgreen ' , ' darkgreen ' , ' lightpink ' , ' slateblue ' , ' slategray ' , ' orange ' , ' tomato ' , ' peru ' , ' navy ' , ' teal ' ]
plotcolours15 = [ ' darkolivegreen ' , ' turquoise ' , ' lightgreen ' , ' darkgreen ' , ' lightpink ' , ' slateblue ' , ' slategray ' , ' orange ' , ' tomato ' , ' peru ' , ' navy ' , ' teal ' , ' lightgreen ' , ' lightpink ' , ' slateblue ' ]
#plt.cm.Paired(np.arange(len(Fdf_1900_2080_means)))
#write the key plots to a single pdf document
pdf_out_file_name = Clim_var_type + ' _ ' + Stats + ' _start_ ' + Base_period_start + ' _NARCliM_summary_ ' + Version + ' .pdf '
pdf_out_path = output_directory + ' / ' + pdf_out_file_name
#open pdf and add the plots
with PdfPages ( pdf_out_path ) as pdf :
#barplot of model means
plt . title ( Clim_var_type + ' - model means - full period ' )
ymin = min ( Fdf_1900_2080_means )
ymax = max ( Fdf_1900_2080_means ) + 0.008 * min ( Fdf_1900_2080_means )
Fdf_1900_2080_means . plot ( kind = ' bar ' , ylim = ( ymin , ymax ) , color = plotcolours36 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
#
neardeltadf = delta_all_df [ ' near ' ]
ymin = min ( neardeltadf ) + 0.1 * min ( neardeltadf )
ymax = max ( neardeltadf ) + 0.1 * max ( neardeltadf )
neardeltadf = delta_all_df [ ' far ' ]
ymin2 = min ( neardeltadf ) + 0.1 * min ( neardeltadf )
ymax2 = max ( neardeltadf ) + 0.1 * max ( neardeltadf )
ymin = min ( ymin , ymin2 )
if ( Clim_var_type == ' tasmax ' or Clim_var_type == ' tasmean ' ) :
ymin = 0
ymax = max ( ymax , ymax2 )
#
# delta barplot for report 1#################################
ax = plt . subplot ( 2 , 1 , 1 )
plt . title ( Clim_var_type + ' - model deltas - near-present ' )
neardeltadf = delta_all_df [ ' near ' ]
neardeltadf . plot ( kind = ' bar ' , color = plotcolours15 , ylim = ( ymin , ymax ) , ax = ax )
plt . xticks ( [ ] )
#ax.xaxis.set_ticklabels([])
#pdf.savefig(bbox_inches='tight', ylim=(ymin,ymax), pad_inches=0.4)
#plt.close()
#
ax = plt . subplot ( 2 , 1 , 2 )
plt . title ( Clim_var_type + ' - model deltas - far-present ' )
neardeltadf = delta_all_df [ ' far ' ]
neardeltadf . plot ( kind = ' bar ' , color = plotcolours15 , ylim = ( ymin , ymax ) , ax = ax )
ax . xaxis . grid ( False )
#fig.patch.set_alpha(0)
#plt.show()
pdf . savefig ( bbox_inches = ' tight ' , ylim = ( ymin , ymax ) , pad_inches = 0.4 )
plt . close ( )
# end delta barplot for report 1#################################
#
#full period density comparison
plt . title ( Clim_var_type + ' - density comparison - full period - all models ' )
Summarized_df . plot . kde ( )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
#full period density comparison
plt . title ( Clim_var_type + ' - density comparison - full period - max delta model ' )
xmin = float ( max ( np . nanpercentile ( Fdf_1900_2080 . filter ( regex = Max_dif_mod_name [ : - 5 ] ) , 50 ) - 4 * np . std ( Fdf_1900_2080 . filter ( regex = Max_dif_mod_name [ : - 5 ] ) ) ) )
xmax = float ( max ( np . nanpercentile ( Fdf_1900_2080 . filter ( regex = Max_dif_mod_name [ : - 5 ] ) , 50 ) + 4 * np . std ( Fdf_1900_2080 . filter ( regex = Max_dif_mod_name [ : - 5 ] ) ) ) )
Fdf_1900_2080 . filter ( regex = Max_dif_mod_name [ : - 5 ] ) . plot . kde ( xlim = ( xmin , xmax ) )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
#annual box
plt . title ( Clim_var_type + ' - Annual means/sums for max diff model ' )
Fdf_1900_2080_annual . boxplot ( rot = 90 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
#
#daily box
plt . title ( Clim_var_type + ' - Daily means/sums ' )
Fdf_1900_2080 . boxplot ( rot = 90 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
# time series plot annual ALL models
plt . title ( Clim_var_type + ' - Time series - all models ' )
Mod_order = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 19 , 20 , 21 , 16 , 17 , 18 , 22 , 23 , 24 , 31 , 32 , 33 , 25 , 26 , 27 , 28 , 29 , 30 , 34 , 35 , 36 ]
test = Fdf_1900_2080_annual
Mod_Names = test . columns
New_Mod_Name = [ ]
for i in range ( 0 , len ( Mod_Names ) ) :
New_Mod_Name . append ( str ( Mod_order [ i ] + 10 ) + ' _ ' + Mod_Names [ i ] )
test . columns = New_Mod_Name
test_sorted = test . reindex_axis ( sorted ( test . columns ) , axis = 1 )
colnamest = test . columns
test_sorted . columns = [ w [ 3 : - 5 ] for w in colnamest ]
test_sorted . plot ( legend = False , color = plotcolours36 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
# time series plot annual ALL models
plt . title ( Clim_var_type + ' - Time series - representative models ' )
dfall_annual . plot ( legend = False )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
# seasonal mean boxplots
ymin = min ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 1 ] . mean ( ) )
ymax = max ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 1 ] . mean ( ) )
plt . title ( Clim_var_type + ' - DJF Summer means/sums ' )
pd . DataFrame ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 1 ] . mean ( ) ) . plot ( kind = ' bar ' , ylim = ( ymin , ymax ) )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
plt . title ( Clim_var_type + ' - DJF Summer means/sums ' )
Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 1 ] . boxplot ( rot = 90 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
ymin = min ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 2 ] . mean ( ) )
ymax = max ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 2 ] . mean ( ) )
plt . title ( Clim_var_type + ' - MAM Autumn means/sums ' )
pd . DataFrame ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 2 ] . mean ( ) ) . plot ( kind = ' bar ' , ylim = ( ymin , ymax ) )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
plt . title ( Clim_var_type + ' - MAM Autumn means/sums ' )
Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 2 ] . boxplot ( rot = 90 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
ymin = min ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 3 ] . mean ( ) )
ymax = max ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 3 ] . mean ( ) )
plt . title ( Clim_var_type + ' - JJA Winter means/sums ' )
pd . DataFrame ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 3 ] . mean ( ) ) . plot ( kind = ' bar ' , ylim = ( ymin , ymax ) )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
plt . title ( Clim_var_type + ' - JJA Winter means/sums ' )
Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 3 ] . boxplot ( rot = 90 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
ymin = min ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 4 ] . mean ( ) )
ymax = max ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 4 ] . mean ( ) )
plt . title ( Clim_var_type + ' - SON Spring means/sums ' )
pd . DataFrame ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 4 ] . mean ( ) ) . plot ( kind = ' bar ' , ylim = ( ymin , ymax ) )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
plt . title ( Clim_var_type + ' - SON Spring means/sums ' )
Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 4 ] . boxplot ( rot = 90 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )