
6/13/2018 Selafin files

http://www.gdal.org/drv_selafin.html 1/6

Selafin files
OGR supports reading from 2D Selafin/Seraphin files. Selafin/Seraphin is the generic output and input
format of geographical files in the open-source Telemac hydraulic model. The file format is suited to the
description of numerical attributes for a set of point features at different time steps. Those features usually
correspond to the nodes in a finite-element model. The file also holds a connectivity table which describes
the elements formed by those nodes and which can also be read by the driver.

The driver supports the use of VSI virtual files as Selafin datasources.

The driver offers full read-write support on Selafin files. However, due to the particular nature of Selafin
files where element (polygon) features and node (point) features are closely related, writing on Selafin layers
can lead to counter-intuitive results. In a general way, writing on any layer of a Selafin data-source will cause
side effects on all the other layers. Also, it is very important not to open the same datasource more than
once in update mode. Having two processes write at the same time on a single datasource can lead to
irreversible data corruption. The driver issues a warning each time a datasource is opened in update mode.

Magic bytes

There is no generic extension to Selafin files. The adequate format is tested by looking at a dozen of magic
bytes at the beginning of the file:

The first four bytes of the file should contain the values (in hexadecimal): 00 00 00 50. This actually
indicates the start of a string of length 80 in the file.
At position 84 in the file, the eight next bytes should read (in hexadecimal): 00 00 00 50 00 00 00 04.

Files which match those two criteria are considered to be Selafin files and the driver will report it has opened
them successfully.

Format

Selafin format is designed to hold data structures in a portable and compact way, and to allow efficient
random access to the data. To this purpose, Selafin files are binary files with a generic structure.

Elements

Selafin files are made of the juxtaposition of elements. Elements have one of the following types:

integer,
string,
floating point values,
arrays of integers,
arrays of floating point values.

Element Internal representation Comments

Integer a b c d
Integers are stored on 4 bytes in big-endian format (most significant
byte first). The value of the integer is 224.a+216.b+28.c+d.

Floating
point a b c d

Floating point values are stored on 4 bytes in IEEE 754 format and
under big-endian convention (most significant byte first). Endianness is
detected at run time only once when the first floating point value is
read.

String Strings are stored in three parts:

http://www.opentelemac.org/


6/13/2018 Selafin files

http://www.gdal.org/drv_selafin.html 2/6

Length 123 4 5 ... Length an integer holding the length (in characters) of the string, over 4
bytes;
the sequence of characters of the string, each character on one
byte;
the same integer with the length of the string repeated

Array of
integers Length 1 2 3 ... Length

Arrays of integers are stored in three parts:

an integer holding the length (in bytes, thus 4 times the number of
elements) of the array, over 4 bytes;
the sequence of integers in the array, each integer on 4 bytes as
described earlier;
the same integer with the length of the array repeated

Array of
floating
point
values

Length 1 2 3 ... Length

Arrays of floating point values are stored in three parts:

an integer holding the length (in bytes, thus 4 times the number of
elements) of the array, over 4 bytes;
the sequence of floating point values in the array, each one on 4
bytes as described earlier;
the same integer with the length of the array repeated

Full structure

The header of a Selafin file holds the following elements in that exact order:

a string of 80 characters with the title of the study; the last 8 characters shall be "SERAPHIN" or
"SERAFIN" or "SERAFIND";
an array of integers of exactly 2 elements, the first one being the number of variables (attributes) nVar,
and the second is ignored;
nVar strings with the names of the variables, each one with length 32;
an array of integers of exactly 10 elements:

the third element is the x-coordinate of the origin of the model;
the fourth element is the y-coordinate of the origin of the model;
the tenth element isDate indicates if the date of the model has to be read (see later);
in addition, the second element being unused by hydraulic software at the moment, it is used by
the driver to store the spatial reference system of the datasource, in the form of a single integer
with the EPSG number of the projection;

if isDate=1, an array of integers of exactly 6 elements, with the starting date of the model (year,
month, day, hour, minute, second);
an array of integers of exactly 4 elements:

the first element is the number of elements nElements,
the second element is the number of points nPoints,
the third element is the number of points per elementnPointsPerElement,
the fourth element must be 1;

an array of integers of exactly nElements*nPointsPerElement elements, with each successive set of
nPointsPerElement being the list of the number of the points (number starting with 1) constituting an
element;
an array of integers of exactly nPoints elements ignored by the driver (the elements shall be 0 for
inner points and another value for the border points where a limit condition is applied);
an array of floating point values of exactly nPoints elements with the x-coordinates of the points;
an array of floating point values of exactly nPoints elements with the y-coordinates of the points;



6/13/2018 Selafin files

http://www.gdal.org/drv_selafin.html 3/6

The rest of the file actually holds the data for each successive time step. A time step contains the following
elements:

a array of floating point values of exactly 1 element, being the date of the time step relative to the
starting date of the simulation (usually in seconds);
nVar array of floating point values, each with exactly nPoints elements, with the values of each
attribute for each point at the current time step.

Mapping between file and layers

Layers in a Selafin datasource

The Selafin driver accepts only Selafin files as data sources.

Each Selafin file can hold one or several time steps. All the time steps are read by the driver and two layers
are generated for each time step:

one layer with the nodes (points) and their attributes: its name is the base name of the data source,
followed by "_p" (for Points);
one layer with the elements (polygons) and their attributes calculated as the averages of the values of
the attributes of their vertices: its name is the base name of the data source, followed by "_e" (for
Elements).

Finally, either the number of the time step, or the calculated date of the time step (based on the starting date
and the number of seconds elapsed), is added to the name. A data source in a file called Results may
therefore be read as several layers:

Results_p2014_05_01_20_00_00, meaning that the layers holds the attributes for the nodes and that the
results hold for the time step at 8:00 PM, on May 1st, 2014;
Results_e2014_05_01_20_00_00, meaning that the layers holds the attributes for the elements and that
the results hold for the time step at 8:00 PM, on May 1st, 2014;
Results_p2014_05_01_20_15_00, meaning that the layers holds the attributes for the elements and that
the results hold for the time step at 8:15 PM, on May 1st, 2014;
...

Constraints on layers

Because of the format of the Selafin file, the layers in a single Selafin datasource are not independent from
each other. Changing one layer will most certainly have side effects on all other layers. The driver updates all
the layers to match the constraints:

All the point layers have the same number of features. When a feature is added or removed in one
layer, it is also added or removed in all other layers.
Features in different point layers share the same geometry. When the position of one point is changed,
it is also changed in all other layers.
All the element layers have the same number of features. When a feature is added or removed in one
layer, it is also added or removed in all other layers.
All the polygons in element layers have the same number of vertices. The number of vertices is fixed
when the first feature is added to an element layer, and can not be changed afterwards without
recreating the datasource from scratch.
Features in different element layers share the same geometry. When an element is added or removed in
one layer, it is also added or removed in all other layers.
Every vertex of every feature in an element layer has a corresponding point feature in the point layers.
When an element feature is added, if its vertices do not exist yet, they are created in the point layers.
Points and elements layers only support attributes of type "REAL". The format of real numbers (width
and precision) can not be changed.



6/13/2018 Selafin files

http://www.gdal.org/drv_selafin.html 4/6

Layer filtering specification

As a single Selafin files may hold millions of layers, and the user is generally interested in only a few of
them, the driver supports syntactic sugar to filter the layers before they are read.

When the datasource is specified, it may be followed immediately by a layer filtering specification., as in
Results[0:10]. The effects of the layer filtering specification is to indicate which time steps shall be loaded
from all Selafin files.

The layer filtering specification is a comma-separated sequence of range specifications, delimited by square
brackets and maybe preceded by the character 'e' or 'p'. The effect of characters 'e' and 'p' is to select
respectively either only elements or only nodes. If no character is added, both nodes and elements are
selected. Each range specification is:

either a single number, representing one single time step (whose numbers start with 0),
or a set of two numbers separated by a colon: in that case, all the time steps between and including
those two numbers are selected; if the first number is missing, the range starts from the beginning of
the file (first time step); if the second number is missing, the range goes to the end of the file (last time
step);

Numbers can also be negative. In this case, they are counted from the end of the file, -1 being the last time
step.

Some examples of layer filtering specifications:
[0] First time step only, but return both points and elements
[e:9] First 10 time steps only, and only layers with elements
[p-4:] Last 4 time steps only, and only layers with nodes
[3,10,-2:-1] 4th, 11th, and last two time steps, for both nodes and elements

Datasource creation options

Datasource creation options can be specified with the "-dsco" flag in ogr2ogr.

TITLE
Title of the datasource, stored in the Selafin file. The title must not hold more than 72 characters. If it
is longer, it will be truncated to fit in the file.

DATE
Starting date of the simulation. Each layer in a Selafin file is characterized by a date, counted in
seconds since a reference date. This option allows providing the reference date. The format of this
field must be YYYY-MM-DD_hh:mm:ss. The format does not mention the time zone.

An example of datasource creation option is: -dsco TITLE="My simulation" -dsco DATE=2014-05-
01_10:00:00.

Layer creation options

Layer creation options can be specified with the "-lco" flag in ogr2ogr.

DATE
Date of the time step relative to the starting date of the simulation (see Datasource creation options).
This is a single floating-point value giving the number of seconds since the starting date.

An example of datasource creation option is: -lco DATE=24000.

Notes about the creation and the update of a Selafin datasource



6/13/2018 Selafin files

http://www.gdal.org/drv_selafin.html 5/6

The driver supports creating and writing to Selafin datasources, but there are some caveats when doing so.

When a new datasource is created, it does not contain any layer, feature or attribute.

When a new layer is created, it automatically inherits the same number of features and attributes as the other
layers of the same type (points or elements) already in the datasource. The features inherit the same
geometry as their corresponding ones in other layers. The attributes are set to 0. If there was no layer in the
datasource yet, the new layer is created with no feature and attribute.In any case, when a new layer is
created, two layers are actually added: one for points and one for elements.

New features and attributes can be added to the layers or removed. The behaviour depends on the type of
layer (points or elements). The following table explains the behaviour of the driver in the different cases.

Operation Points layers Element layers
Change
the
geometry
of a
feature

The coordinates of the
point are changed in the
current layer and all
other layers in the
datasource.

The coordinates of all the vertices of the element are changed in the
current layer and all other layers in the datasource. It is not possible to
change the number of vertices. The order of the vertices matters.

Change
the
attributes
of a
feature

The attributes of the
point are changed in the
current layer only.

No effect.

Add a new
feature

A new point is added at
the end of the list of
features, for this layer
and all other layers. Its
attributes are set to the
values of the new
feature.

The operation is only allowed if the new feature has the same number
of vertices as the other features in the layer. The vertices are checked
to see if they currently exist in the set of points. A vertex is considered
equal to a point if its distance is less than some maximum distance,
approximately equal to 1/1000th of the average distance between two
points in the points layers. When a corresponding point is found, it is
used as a vertex for the element. If no point is found, a new is created
in all associated layers.

Delete a
feature

The point is removed
from the current layer
and all point layers in
the datasource. All
elements using this point
as a vertex are also
removed from all
element layers in the
datasource.

The element is removed from the current layer and all element layers
in the datasource.

Typically, this implementation of operations is exactly what you'll expect. For example, ogr2ogr can be used
to reproject the file without changing the inner link between points and elements.

It should be noted that update operations on Selafin datasources are very slow. This is because the format
does no allow for quick insertions or deletion of features and the file must be recreated for each operation.

VSI Virtual File System API support

The driver supports reading and writing to files managed by VSI Virtual File System API, which include
"regular" files, as well as files in the /vsizip/ (read-write) , /vsigzip/ (read-only) , /vsicurl/ (read-only)
domains.

Other notes



6/13/2018 Selafin files

http://www.gdal.org/drv_selafin.html 6/6

There is no SRS specification in the Selafin standard. The implementation of SRS is an addition of the driver
and stores the SRS in an unused data field in the file. Future software using the Selafin standard may use this
field and break the SRS specification. In this case, Selafin files will still be readable by the driver, but their
writing will overwrite a value which may have another purpose.


