Update To include RMA10 - 3D - and mid side node

master
Mathieu Deiber 5 years ago
parent 93705a7a49
commit ff8f9ff299

@ -0,0 +1,373 @@
# coding: utf-8
# In[64]:
import struct
import matplotlib.pyplot as plt
import math
from py_rmatools import rma
plt.rcParams.update({'figure.max_open_warning': 0})
# In[65]:
meshFilename = 'HWQ010.rm1'
channelWidth = 100
RMAfilename = 'HWQ277_2010_WQ'
#If RMA11
constNum = [1,2,3,5,6,7,8,10,11,13,14,15,18]
# In[66]:
def isElementOneD(nodelist):
if len(nodelist) == 2:
return True
return False
def isElementSquare(nodelist):
if len(nodelist) == 4:
return True
return False
def square2Triangle(ElementNum):
nodelist = ElementDict[ElementNum]
if isElementSquare(nodelist):
ElementDict[ElementNum] = [nodelist[0], nodelist[1], nodelist[2]]
ElementList.append(max(ElementList) + 1)
ElementDict[ElementList[-1]]= [nodelist[0], nodelist[2], nodelist[3]]
def oneD2triangle(ElementNum):
if isElementOneD(ElementDict[ElementNum]):
nAe = ElementDict[ElementNum][0] #nAe Node A existing
nBe = ElementDict[ElementNum][1]
if not nAe in node1Dduplicate: node1Dduplicate[nAe] = []
if not nBe in node1Dduplicate: node1Dduplicate[nBe] = []
xA = nodeDict[nAe][0]
xB = nodeDict[nBe][0]
yA = nodeDict[nAe][1]
yB = nodeDict[nBe][1]
normalVec = [-(yB - yA),(xB - xA)]
dist = math.sqrt(normalVec[0]**2 + normalVec[1]**2)
normalVec[0] = normalVec[0] / dist
normalVec[1] = normalVec[1] / dist
xA2 = xA + channelWidth * normalVec[0]
xB2 = xB + channelWidth * normalVec[0]
yA2 = yA + channelWidth * normalVec[1]
yB2 = yB + channelWidth * normalVec[1]
nA = max(NodeList) + 1
nB = max(NodeList) + 2
node1Dduplicate[nAe].append(nA)
node1Dduplicate[nBe].append(nB)
node2nodevalue[nA] = nAe
node2nodevalue[nB] = nBe
NodeList.append(nA)
NodeList.append(nB)
nodeDict[nA] = [xA2, yA2, -1.01]
nodeDict[nB] = [xB2, yB2, -1.01]
newEle = max(ElementList) + 1
ElementList .append(newEle)
ElementDict[ElementNum] = [nAe, nA, nBe]
ElementDict[newEle] = [nA, nB, nBe]
def RMA11toSerafin():
f = open('{}.slf'.format(RMAfilename), 'wb')
f.write(struct.pack(">l",80))
str='{0: >80}'.format('SERAFIN ')
f.write(str.encode('ascii'))
f.write(struct.pack(">l",80))
f.write(struct.pack(">l",8))
f.write(struct.pack(">l",len(constNum)))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",8))
for c in constName:
f.write(struct.pack(">l",32))
str='{0: <32}'.format(c)
f.write(str.encode('ascii'))
f.write(struct.pack(">l",32))
f.write(struct.pack(">l",40))
f.write(struct.pack(">l",1))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",1))
f.write(struct.pack(">l",40))
f.write(struct.pack(">l",24))
f.write(struct.pack(">l",R.year))
f.write(struct.pack(">l",1))
f.write(struct.pack(">l",1))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",24))
f.write(struct.pack(">l",16))
f.write(struct.pack(">l",len(ElementList)))
f.write(struct.pack(">l",len(NodeList)))
f.write(struct.pack(">l",3))
f.write(struct.pack(">l",1))
f.write(struct.pack(">l",16))
f.write(struct.pack(">l",len(ElementList)*3*4))
for el in ElementList:
for nd in ElementDict[el]:
f.write(struct.pack(">l",nodeOrdered[nd]))
f.write(struct.pack(">l",len(ElementList)*3*4))
f.write(struct.pack(">l",len(NodeList)))
for i in range(0,len(NodeList)):
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",len(NodeList)))
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
f.write(struct.pack(">f",value[0]))
f.write(struct.pack(">l",len(NodeList)*4))
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
f.write(struct.pack(">f",value[1]))
f.write(struct.pack(">l",len(NodeList)*4))
while R.next():
#for i in range(3):
f.write(struct.pack(">l",4))
f.write(struct.pack(">f",R.time * 3600))
f.write(struct.pack(">l",4))
for c in constNum:
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
if key in node2nodevalue.keys():
f.write(struct.pack(">f",R.constit[c][node2nodevalue[key]]))
else:
f.write(struct.pack(">f",R.constit[c][key]))
f.write(struct.pack(">l",len(NodeList)*4))
#R.next()
f.close()
def RMA2toSerafin():
f = open('{}.slf'.format(RMAfilename), 'wb')
f.write(struct.pack(">l",80))
str='{0: >80}'.format('SERAFIN ')
f.write(str.encode('ascii'))
f.write(struct.pack(">l",80))
f.write(struct.pack(">l",8))
f.write(struct.pack(">l",len(constName)))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",8))
for c in constName:
f.write(struct.pack(">l",32))
str='{0: <32}'.format(c)
f.write(str.encode('ascii'))
f.write(struct.pack(">l",32))
f.write(struct.pack(">l",40))
f.write(struct.pack(">l",1))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",1))
f.write(struct.pack(">l",40))
f.write(struct.pack(">l",24))
f.write(struct.pack(">l",R.year))
f.write(struct.pack(">l",1))
f.write(struct.pack(">l",1))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",24))
f.write(struct.pack(">l",16))
f.write(struct.pack(">l",len(ElementList)))
f.write(struct.pack(">l",len(NodeList)))
f.write(struct.pack(">l",3))
f.write(struct.pack(">l",1))
f.write(struct.pack(">l",16))
f.write(struct.pack(">l",len(ElementList)*3*4))
for el in ElementList:
for nd in ElementDict[el]:
f.write(struct.pack(">l",nodeOrdered[nd]))
f.write(struct.pack(">l",len(ElementList)*3*4))
f.write(struct.pack(">l",len(NodeList)))
for i in range(0,len(NodeList)):
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",len(NodeList)))
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
f.write(struct.pack(">f",value[0]))
f.write(struct.pack(">l",len(NodeList)*4))
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
f.write(struct.pack(">f",value[1]))
f.write(struct.pack(">l",len(NodeList)*4))
while R.next():
f.write(struct.pack(">l",4))
f.write(struct.pack(">f",R.time * 3600))
f.write(struct.pack(">l",4))
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
if key in node2nodevalue.keys():
f.write(struct.pack(">f",R.xvel[node2nodevalue[key]]))
else:
f.write(struct.pack(">f",R.xvel[key]))
f.write(struct.pack(">l",len(NodeList)*4))
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
if key in node2nodevalue.keys():
f.write(struct.pack(">f",R.yvel[node2nodevalue[key]]))
else:
f.write(struct.pack(">f",R.yvel[key]))
f.write(struct.pack(">l",len(NodeList)*4))
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
if key in node2nodevalue.keys():
f.write(struct.pack(">f",R.depth[node2nodevalue[key]]))
else:
f.write(struct.pack(">f",R.depth[key]))
f.write(struct.pack(">l",len(NodeList)*4))
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
if key in node2nodevalue.keys():
f.write(struct.pack(">f",R.elevation[node2nodevalue[key]]))
else:
f.write(struct.pack(">f",R.elevation[key]))
f.write(struct.pack(">l",len(NodeList)*4))
R.next()
f.close()
# In[67]:
#Read mesh file and extract node (except mid node) and elements - plus convert 1D element to 2D for vizualisation
NodeList = []
ElementList = []
ElementDict = {}
nodeDict = {}
node1Dduplicate = {} #Original Number: List of Duplicates
node2nodevalue = {} #link between the node number and the node value to use
#(e.g. if node 10 is a 1D node: 10 is not duplicate so {1:1},
#but node 2050 (duplicate of 10) (1D to 2D) the value of the duplicated
#node will be the same as the original so we might have {2050: 10})
with open(meshFilename) as f:
line = f.readline()
line = f.readline()
line = f.readline()
line = f.readline()
cpt = 1
while line and line != ' 9999\n':
temp = line.split()
ElementDict[int(temp[0])] = [int(temp[i]) for i in range(1,9,2) if temp[i] != '0' and int(temp[9]) < 100]
ElementList.append(int(temp[0]))
line = f.readline()
for key, value in ElementDict.items():
NodeList.extend(value)
NodeList = list(set(NodeList))
line = f.readline()
while line and line != ' 9999\n':
temp = line.split()
if int(temp[0]) in NodeList:
nodeDict[int(temp[0])] = [float(temp[1]),float(temp[2]),float(temp[3])]
line = f.readline()
for e in ElementList:
oneD2triangle(e)
square2Triangle(e)
for key in list(ElementDict): #Remove Special Element 902.....
if len(ElementDict[key]) != 3:
print(key, ElementDict[key])
ElementDict.pop(key)
ElementList.remove(key)
nodeOrdered = {}
cpt = 1
for key, value in nodeDict.items():
nodeOrdered[key] = cpt
cpt +=1
# # Open and Read First Step of the RMA File and Save a Serafin
# In[72]:
R=rma()
R.open(RMAfilename)
R.next()
if R.type==b'RMA11 ':
constName = []
for c in constNum:
constName.append(R.constit_name[c].decode("utf-8"))
RMA11toSerafin()
if R.type==b'RMA2 ':
constName = ['X-VEL','Y-VEL','DEPTH','FREE SURFACE']
RMA2toSerafin()

@ -0,0 +1,738 @@
# coding: utf-8
# In[64]:
import struct
import matplotlib.pyplot as plt
import math
from py_rmatools_v03 import rma
import re
from datetime import datetime, timedelta
import pandas as pd
import numpy as np
plt.rcParams.update({'figure.max_open_warning': 0})
# In[65]:
meshFilename = 'pok005.rm1'
channelWidth = 100
RMAfilenames = ['POA034']
#If RMA11
constNum = [1]
#If RMA11 3D
#Options = [4,8,1,'Max'] #Option available 'Max' , an integer correspond to the layer number to extract the results, if 2D use options = [1] - 'Percentile' (percentile only work for RMA11 FOR now)
Options = [8]
percentiles = [0.5,0.8,0.9,0.95,1]
NodeLayersFile = 'NodeLayers005.txt' #the node layer file was created by getting the nodes number from the RMA Outfile (just run RMA11 for a few steps)
Nnodes = 6674 #Number of nodes (including mid side node) - thisn umber also correspond to the last node number in the nodelayers file
# In[66]:
def isElementOneD(nodelist1):
if len(nodelist1) == 3:
return True
return False
def isElementSquare(nodelist1):
if len(nodelist1) == 8:
return True
return False
def isElementTriangle(nodelist1):
if len(nodelist1) == 6:
return True
return False
def square2Triangle(ElementNum):
nodelist1 = ElementDict[ElementNum]
if isElementSquare(nodelist1):
ElementDict[ElementNum] = [nodelist1[0], nodelist1[1], nodelist1[7]]
ElementList.append(max(ElementList) + 1)
ElementDict[ElementList[-1]]= [nodelist1[1], nodelist1[2], nodelist1[3]]
ElementList.append(max(ElementList) + 1)
ElementDict[ElementList[-1]]= [nodelist1[1], nodelist1[3], nodelist1[7]]
ElementList.append(max(ElementList) + 1)
ElementDict[ElementList[-1]]= [nodelist1[3], nodelist1[4], nodelist1[5]]
ElementList.append(max(ElementList) + 1)
ElementDict[ElementList[-1]]= [nodelist1[3], nodelist1[5], nodelist1[7]]
ElementList.append(max(ElementList) + 1)
ElementDict[ElementList[-1]]= [nodelist1[5], nodelist1[6], nodelist1[7]]
def triangle2Triangles(ElementNum):
nodelist1 = ElementDict[ElementNum]
if isElementTriangle(nodelist1):
ElementDict[ElementNum] = [nodelist1[0], nodelist1[1], nodelist1[5]]
ElementList.append(max(ElementList) + 1)
ElementDict[ElementList[-1]]= [nodelist1[1], nodelist1[2], nodelist1[3]]
ElementList.append(max(ElementList) + 1)
ElementDict[ElementList[-1]]= [nodelist1[1], nodelist1[3], nodelist1[5]]
ElementList.append(max(ElementList) + 1)
ElementDict[ElementList[-1]]= [nodelist1[3], nodelist1[4], nodelist1[5]]
def oneD2triangle(ElementNum):
if isElementOneD(ElementDict[ElementNum]):
nAe = ElementDict[ElementNum][0] #nAe Node A existing
nBe = ElementDict[ElementNum][1]
if not nAe in node1Dduplicate: node1Dduplicate[nAe] = []
if not nBe in node1Dduplicate: node1Dduplicate[nBe] = []
xA = nodeDict[nAe][0]
xB = nodeDict[nBe][0]
yA = nodeDict[nAe][1]
yB = nodeDict[nBe][1]
normalVec = [-(yB - yA),(xB - xA)]
dist = math.sqrt(normalVec[0]**2 + normalVec[1]**2)
normalVec[0] = normalVec[0] / dist
normalVec[1] = normalVec[1] / dist
xA2 = xA + channelWidth * normalVec[0]
xB2 = xB + channelWidth * normalVec[0]
yA2 = yA + channelWidth * normalVec[1]
yB2 = yB + channelWidth * normalVec[1]
nA = max(NodeList) + 1
nB = max(NodeList) + 2
node1Dduplicate[nAe].append(nA)
node1Dduplicate[nBe].append(nB)
node2nodevalue[nA] = nAe
node2nodevalue[nB] = nBe
NodeList.append(nA)
NodeList.append(nB)
nodeDict[nA] = [xA2, yA2, -1.01]
nodeDict[nB] = [xB2, yB2, -1.01]
newEle = max(ElementList) + 1
ElementList .append(newEle)
ElementDict[ElementNum] = [nAe, nA, nBe]
ElementDict[newEle] = [nA, nB, nBe]
def RMA2toSerafin():
f = open('{}.slf'.format(RMAfilename), 'wb')
f.write(struct.pack(">l",80))
str='{0: >80}'.format('SERAFIN ')
f.write(str.encode('ascii'))
f.write(struct.pack(">l",80))
f.write(struct.pack(">l",8))
f.write(struct.pack(">l",len(constName)))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",8))
for c in constName:
f.write(struct.pack(">l",32))
str='{0: <32}'.format(c)
f.write(str.encode('ascii'))
f.write(struct.pack(">l",32))
f.write(struct.pack(">l",40))
f.write(struct.pack(">l",1))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",1))
f.write(struct.pack(">l",40))
f.write(struct.pack(">l",24))
f.write(struct.pack(">l",R.year))
f.write(struct.pack(">l",1))
f.write(struct.pack(">l",1))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",24))
f.write(struct.pack(">l",16))
f.write(struct.pack(">l",len(ElementList)))
f.write(struct.pack(">l",len(NodeList)))
f.write(struct.pack(">l",3))
f.write(struct.pack(">l",1))
f.write(struct.pack(">l",16))
f.write(struct.pack(">l",len(ElementList)*3*4))
for el in ElementList:
for nd in ElementDict[el]:
f.write(struct.pack(">l",nodeOrdered[nd]))
f.write(struct.pack(">l",len(ElementList)*3*4))
f.write(struct.pack(">l",len(NodeList)))
for i in range(0,len(NodeList)):
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",len(NodeList)))
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
f.write(struct.pack(">f",value[0]))
f.write(struct.pack(">l",len(NodeList)*4))
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
f.write(struct.pack(">f",value[1]))
f.write(struct.pack(">l",len(NodeList)*4))
while R.next():
f.write(struct.pack(">l",4))
f.write(struct.pack(">f",R.time * 3600))
f.write(struct.pack(">l",4))
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
if key in node2nodevalue.keys():
f.write(struct.pack(">f",R.xvel[node2nodevalue[key]]))
else:
f.write(struct.pack(">f",R.xvel[key]))
f.write(struct.pack(">l",len(NodeList)*4))
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
if key in node2nodevalue.keys():
f.write(struct.pack(">f",R.yvel[node2nodevalue[key]]))
else:
f.write(struct.pack(">f",R.yvel[key]))
f.write(struct.pack(">l",len(NodeList)*4))
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
if key in node2nodevalue.keys():
f.write(struct.pack(">f",R.depth[node2nodevalue[key]]))
else:
f.write(struct.pack(">f",R.depth[key]))
f.write(struct.pack(">l",len(NodeList)*4))
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
if key in node2nodevalue.keys():
f.write(struct.pack(">f",R.elevation[node2nodevalue[key]]))
else:
f.write(struct.pack(">f",R.elevation[key]))
f.write(struct.pack(">l",len(NodeList)*4))
f.close()
def RMA11toSerafin(option=1):
f = open('{}_{}.slf'.format(run,option), 'wb')
f.write(struct.pack(">l",80))
strtemp='{0: >80}'.format('SERAFIN ')
f.write(strtemp.encode('ascii'))
f.write(struct.pack(">l",80))
f.write(struct.pack(">l",8))
f.write(struct.pack(">l",len(constName)))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",8))
for idx,c in enumerate(constName):
f.write(struct.pack(">l",32))
strtemp='{0: <32}'.format(str(idx)+c)
f.write(strtemp.encode('ascii'))
f.write(struct.pack(">l",32))
f.write(struct.pack(">l",40))
f.write(struct.pack(">l",1))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",1))
f.write(struct.pack(">l",40))
f.write(struct.pack(">l",24))
f.write(struct.pack(">l",startDate.year))
f.write(struct.pack(">l",startDate.month))
f.write(struct.pack(">l",startDate.day))
f.write(struct.pack(">l",startDate.hour))
f.write(struct.pack(">l",startDate.minute))
f.write(struct.pack(">l",startDate.second))
f.write(struct.pack(">l",24))
f.write(struct.pack(">l",16))
f.write(struct.pack(">l",len(ElementList)))
f.write(struct.pack(">l",len(NodeList)))
f.write(struct.pack(">l",3))
f.write(struct.pack(">l",1))
f.write(struct.pack(">l",16))
f.write(struct.pack(">l",len(ElementList)*3*4))
for el in ElementList:
for nd in ElementDict[el]:
f.write(struct.pack(">l",nodeOrdered[nd]))
f.write(struct.pack(">l",len(ElementList)*3*4))
f.write(struct.pack(">l",len(NodeList)))
for i in range(0,len(NodeList)):
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",len(NodeList)))
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
f.write(struct.pack(">f",value[0]))
f.write(struct.pack(">l",len(NodeList)*4))
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
f.write(struct.pack(">f",value[1]))
f.write(struct.pack(">l",len(NodeList)*4))
while R.next():
#for i in range(3):
currentDate = datetime(R.year,1,1) + timedelta(hours = R.time)
timeCurrentStep = currentDate - startDate
f.write(struct.pack(">l",4))
f.write(struct.pack(">f",timeCurrentStep.total_seconds()))
f.write(struct.pack(">l",4))
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
writeConst('X-VEL',key,f)
f.write(struct.pack(">l",len(NodeList)*4))
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
writeConst('Y-VEL',key,f)
f.write(struct.pack(">l",len(NodeList)*4))
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
writeConst('DEPTH',key,f)
f.write(struct.pack(">l",len(NodeList)*4))
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
writeConst('FREE SURFACE',key,f)
f.write(struct.pack(">l",len(NodeList)*4))
for c in constNum:
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
writeConst(c,key,f)
f.write(struct.pack(">l",len(NodeList)*4))
f.close()
def RMA10toSerafin(option=1):
f = open('{}_{}.slf'.format(run,option), 'wb')
f.write(struct.pack(">l",80))
strtemp='{0: >80}'.format('SERAFIN ')
f.write(strtemp.encode('ascii'))
f.write(struct.pack(">l",80))
f.write(struct.pack(">l",8))
f.write(struct.pack(">l",len(constName)))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",8))
for idx,c in enumerate(constName):
f.write(struct.pack(">l",32))
strtemp='{0: <32}'.format(str(idx)+c)
f.write(strtemp.encode('ascii'))
f.write(struct.pack(">l",32))
f.write(struct.pack(">l",40))
f.write(struct.pack(">l",1))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",1))
f.write(struct.pack(">l",40))
f.write(struct.pack(">l",24))
f.write(struct.pack(">l",startDate.year))
f.write(struct.pack(">l",startDate.month))
f.write(struct.pack(">l",startDate.day))
f.write(struct.pack(">l",startDate.hour))
f.write(struct.pack(">l",startDate.minute))
f.write(struct.pack(">l",startDate.second))
f.write(struct.pack(">l",24))
f.write(struct.pack(">l",16))
f.write(struct.pack(">l",len(ElementList)))
f.write(struct.pack(">l",len(NodeList)))
f.write(struct.pack(">l",3))
f.write(struct.pack(">l",1))
f.write(struct.pack(">l",16))
f.write(struct.pack(">l",len(ElementList)*3*4))
for el in ElementList:
for nd in ElementDict[el]:
f.write(struct.pack(">l",nodeOrdered[nd]))
f.write(struct.pack(">l",len(ElementList)*3*4))
f.write(struct.pack(">l",len(NodeList)))
for i in range(0,len(NodeList)):
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",len(NodeList)))
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
f.write(struct.pack(">f",value[0]))
f.write(struct.pack(">l",len(NodeList)*4))
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
f.write(struct.pack(">f",value[1]))
f.write(struct.pack(">l",len(NodeList)*4))
while R.next():
#for i in range(3):
currentDate = datetime(R.year,1,1) + timedelta(hours = R.time)
timeCurrentStep = currentDate - startDate
f.write(struct.pack(">l",4))
f.write(struct.pack(">f",timeCurrentStep.total_seconds()))
f.write(struct.pack(">l",4))
# f.write(struct.pack(">l",len(NodeList)*4))
# for key, value in nodeDict.items():
# writeConst('X-VEL',key,f)
# f.write(struct.pack(">l",len(NodeList)*4))
for c in constName:
f.write(struct.pack(">l",len(NodeList)*4))
data = [None] * len(nodeDict)
idx = 0
for key, value in nodeDict.items():
data[idx] = writeConst(c,key)
idx += 1
f.write(b''.join(data))
f.write(struct.pack(">l",len(NodeList)*4))
f.close()
def writeConst(param,key):
#get the surface node number
# ['X-VEL','Y-VEL','DEPTH','FREE SURFACE','Constituent 1'......]
if param == 'X-VEL':
tempR = R.xvel
elif param == 'Y-VEL':
tempR = R.yvel
elif param == 'Z-VEL':
tempR = R.zvel
elif param == 'DEPTH':
tempR = R.depth
elif param == 'FREE SURFACE':
tempR = R.elevation
elif param == 'TEMPERATURE':
tempR = R.temperature
elif param == 'SALINITY':
tempR = R.salinity
elif param == 'SSED':
tempR = R.sussed
else:
tempR = R.constit[c]
if key in node2nodevalue.keys():
key = node2nodevalue[key]
#based on the surface node number and option selected calculate the value
if option == 'Max':
tempArr = []
for n in nodelayer[key]:
tempArr.append(tempR[n])
tempVal1 = max(tempArr)
elif isinstance(option, int):
temppos = (option - 1 ) * 2
temppos2 = min([temppos,len(nodelayer[key])-1])
tempVal1 = tempR[nodelayer[key][temppos2]]
else:
tempVal1 = tempR[key]
#save the value in the selaphin file
#f.write(struct.pack(">f",tempVal1))
return struct.pack(">f",tempVal1)
def writePCTL(c,pctl):
f = open('{}_{}_{}.slf'.format(run,c,option), 'wb')
f.write(struct.pack(">l",80))
strtemp='{0: >80}'.format('SERAFIN ')
f.write(strtemp.encode('ascii'))
f.write(struct.pack(">l",80))
f.write(struct.pack(">l",8))
f.write(struct.pack(">l",len(pctl)))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",8))
for idx,p in enumerate(pctl):
f.write(struct.pack(">l",32))
strtemp='{0: <32}'.format(str(idx)+ 'pct ' + str(p))
f.write(strtemp.encode('ascii'))
f.write(struct.pack(">l",32))
f.write(struct.pack(">l",40))
f.write(struct.pack(">l",1))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",1))
f.write(struct.pack(">l",40))
f.write(struct.pack(">l",24))
f.write(struct.pack(">l",startDate.year))
f.write(struct.pack(">l",startDate.month))
f.write(struct.pack(">l",startDate.day))
f.write(struct.pack(">l",startDate.hour))
f.write(struct.pack(">l",startDate.minute))
f.write(struct.pack(">l",startDate.second))
f.write(struct.pack(">l",24))
f.write(struct.pack(">l",16))
f.write(struct.pack(">l",len(ElementList)))
f.write(struct.pack(">l",len(NodeList)))
f.write(struct.pack(">l",3))
f.write(struct.pack(">l",1))
f.write(struct.pack(">l",16))
f.write(struct.pack(">l",len(ElementList)*3*4))
for el in ElementList:
for nd in ElementDict[el]:
f.write(struct.pack(">l",nodeOrdered[nd]))
f.write(struct.pack(">l",len(ElementList)*3*4))
f.write(struct.pack(">l",len(NodeList)))
for i in range(0,len(NodeList)):
f.write(struct.pack(">l",0))
f.write(struct.pack(">l",len(NodeList)))
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
f.write(struct.pack(">f",value[0]))
f.write(struct.pack(">l",len(NodeList)*4))
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
f.write(struct.pack(">f",value[1]))
f.write(struct.pack(">l",len(NodeList)*4))
columnName = [node2nodevalue[key] if key in node2nodevalue.keys() else key for key, value in nodeDict.items()]
global dfAll
dfAll = {}
for key, value in nodeDict.items():
if key in node2nodevalue.keys():
key = node2nodevalue[key]
dfAll[key] = np.array([])
cpt = 0
currentDate = datetime(R.year,1,1) + timedelta(hours = R.time)
timeCurrentStep = currentDate - startDate
f.write(struct.pack(">l",4))
f.write(struct.pack(">f",timeCurrentStep.total_seconds()))
f.write(struct.pack(">l",4))
while R.next():
tempR = R.constit[c]
for key, value in nodeDict.items():
if key in node2nodevalue.keys():
key = node2nodevalue[key]
tempArr = []
for n in nodelayer[key]:
tempArr.append(tempR[n])
tempVal1 = max(tempArr)
dfAll[key] = np.append(dfAll[key],tempVal1)
cpt = cpt + 1
for p in pctl:
f.write(struct.pack(">l",len(NodeList)*4))
for key, value in nodeDict.items():
if key in node2nodevalue.keys():
key = node2nodevalue[key]
f.write(struct.pack(">f",np.quantile(dfAll[key],p)))
f.write(struct.pack(">l",len(NodeList)*4))
def readNodeLayers(fname,Nnodes):
fn = open(fname)
lines = fn.readlines()
surfaceNode = int(lines[0])
nodelayer[surfaceNode] = []
for l in lines:
l = int(l)
if (l != surfaceNode) & (l < Nnodes + 1):
surfaceNode = l
nodelayer[surfaceNode] = []
nodelayer[surfaceNode].append(l)
# In[67]:
#Read mesh file and extract node (except mid node) and elements - plus convert 1D element to 2D for vizualisation
nodelayer = {}
NodeList = []
ElementList = []
ElementDict = {}
nodeDict = {}
node1Dduplicate = {} #Original Number: List of Duplicates
node2nodevalue = {} #link between the node number and the node value to use
#(e.g. if node 10 is a 1D node: 10 is not duplicate so {1:1},
#but node 2050 (duplicate of 10) (1D to 2D) the value of the duplicated
#node will be the same as the original so we might have {2050: 10})
with open(meshFilename) as f:
line = f.readline()
line = f.readline()
line = f.readline()
line = f.readline()
cpt = 1
while line and line != ' 9999\n':
#temp = line.split()
temp = re.findall('.....',line)
ElementDict[int(temp[0])] = [int(temp[i]) for i in range(1,9) if int(temp[i]) != 0 and int(temp[9]) < 100]
ElementList.append(int(temp[0]))
line = f.readline()
for key, value in ElementDict.items():
NodeList.extend(value)
NodeList = list(set(NodeList))
line = f.readline()
while line and line != ' 9999\n':
formatFix = (10,16,20,14,10,10)
temp = []
for form in formatFix:
temp.append(line[:form])
line = line[form:]
#line.split()
if int(temp[0]) in NodeList:
nodeDict[int(temp[0])] = [float(temp[1]),float(temp[2]),float(temp[3])]
line = f.readline()
print('Processing triangles')
ElementList2 = ElementList[:]
for e in ElementList2:
print(e)
if isElementTriangle(ElementDict[e]):
triangle2Triangles(e)
elif isElementOneD(ElementDict[e]):
oneD2triangle(e)
else:
square2Triangle(e)
for key in list(ElementDict): #Remove Special Element 902.....
if len(ElementDict[key]) != 3:
print(key, ElementDict[key])
ElementDict.pop(key)
ElementList.remove(key)
nodeOrdered = {}
cpt = 1
for key, value in nodeDict.items():
nodeOrdered[key] = cpt
cpt +=1
# # Open and Read First Step of the RMA File and Save a Serafin
# In[72]:
for run in RMAfilenames:
for option in Options:
RMAfilename = '{}'.format(run)
R=rma()
R.open(RMAfilename)
R.next()
startDate = datetime(R.year,1,1) + timedelta(hours = R.time)
if R.type==b'RMA11 ':
constName = []
readNodeLayers(NodeLayersFile,Nnodes)
constName = ['X-VEL','Y-VEL','DEPTH','FREE SURFACE']
for c in constNum:
constName.append(R.constit_name[c].decode("utf-8"))
print(c)
if option == 'Percentile':
for c in constNum:
writePCTL(c,percentiles)
else:
RMA11toSerafin(option)
if R.type=='RMA10 ':
constName = []
readNodeLayers(NodeLayersFile,Nnodes)
constName = ['X-VEL','Y-VEL','Z-VEL','FREE SURFACE','SALINITY','TEMPERATURE']
if option == 'Percentile':
for c in constNum:
writePCTL(c,percentiles)
else:
RMA10toSerafin(option)
if R.type==b'RMA2 ':
constName = ['X-VEL','Y-VEL','DEPTH','FREE SURFACE']
RMA2toSerafin()

@ -136,9 +136,9 @@ class rma:
np=int(a[2])
self.year=a[3]
if ((nqal-5)!=(self.num_constits)):
print ("Warning - NQAL-5 (%d) on this timestep does not match header (%d)" % (nqal-5,self.num_constits))
print ("Warning - NQAL-5 {} on this timestep {} does not match header {}".format(nqal-5,self.time,self.num_constits))
if (np!=self.num_nodes):
print ("Warning - NP (%d) on this timestep does not match header (%d)" % (np,self.num_nodes))
print ("Warning - NP {} on this timestep {} does not match header {}".format(np,self.time,self.num_nodes))
b=unpack('%df' % nqal*np, self.file.read(4*nqal*np))
i=1
while i<=np:

@ -0,0 +1,212 @@
from struct import unpack
#from pylab import *
import sys
from array import array
# Updated 10/11/15 BMM : Added mesh.
# Updated 10/11/15 MD : Added dictionnary initialisation in mesh.
# Update 8/11/2019 MD : Improve performance (used array instead of unpack)
class rma:
def __init__(self):
self.file = 'not opened yet'
# May want to do some other things here later
def open(self, filename):
self.file = open(('%s.rma' % (filename)), 'rb')
self.header = self.file.read(1000).decode("utf-8")
self.type = self.header[0:10]
self.title = self.header[100:172]
self.geometry = self.header[200:300]
self.num_nodes = int(self.header[40:50])
self.num_elements = int(self.header[50:60])
if self.type == 'RMA11 ':
self.num_constits = int(self.header[60:70])
if len(self.header[80:90].strip()) == 0:
self.num_sedlayers = 0
else:
self.num_sedlayers = int(self.header[80:90])
self.constit_name = []
self.constit_name.append("NULL")
i = 1
print(self.num_constits)
print(self.header[300:1000])
while i <= self.num_constits:
# print self.header[300:400]
self.constit_name.append(self.header[300 + (i - 1) * 8:308 + (i - 1) * 8])
if self.header[300 + (i - 1) * 8:308 + (i - 1) * 8] == " SSED ":
self.constit_name.append(" BSHEAR")
self.constit_name.append("BedThick")
j = 1
print(self.num_sedlayers)
while j <= self.num_sedlayers:
self.constit_name.append(" L%dThick" % j)
j = j + 1
i = i + 1
# print i
# print self.num_constits
# print i
# if self.num_sedlayers > 0:
# self.num_constits=self.num_constits+2+self.num_sedlayers
# Header format in RMA2
# HEADER(1:10) ='RMA2 '
# HEADER(11:20)=DATEC = Date of run
# HEADER(21:30)=TIMEC = Time of run
# HEADER(31:40)=ZONEC = Time zone
# HEADER(41:50)=NP = Number of nodes
# HEADER(51:60)=NE = Number of elements
# HEADER(101:172)=TITLE = Title line
# HEADER(201:300)=FNAME = File name of binary geometry
# Header format in RMA11
# HEADER(1:10) - Model
# HEADER(11:20) - DATEC of model runtime
# HEADER(21:30) - TIMEC of model runtime
# HEADER(31:40) - ZONEC of model runtime
# HEADER(41:90) - '(5I10)' NP,NE,NQAL,IGS,LGS or '(5I10)' NP,NE,NQAL,ISEDS,NLAYT
# HEADER(101:172) - TITLE
# HEADER(301:540) - '(30A8)' CLABL
# HEADER(201:248) - FNAMD directory of the geometry
# HEADER(251:298) - FNAM2 filename of the geometry
def mesh(self, filename):
self.meshfile = open(('%s.rm1' % (filename)), 'r')
l = self.meshfile.readline()
while l[0:5] != ' 9999' and len(l) != 5:
l = self.meshfile.readline()
l = self.meshfile.readline()
self.node_e = {}
self.node_n = {}
self.node_z = {}
while l[0:10] != ' 9999' and len(l) != 10:
ll = l.split()
self.node_e[ll[0]] = ll[1]
self.node_n[ll[0]] = ll[2]
self.node_z[ll[0]] = ll[3]
l = self.meshfile.readline
def next(self):
# This reads the next timestep and populates the variables.
# Reset all of the variables
self.time = 0.0
self.year = 0
self.xvel = []
self.yvel = []
self.zvel = []
self.depth = []
self.elevation = []
self.temperature = []
self.salinity = []
self.sussed = []
# Add in an entry to fill position 0. Important since RMA files start numbering nodes from 1.
self.xvel.append(-999)
self.yvel.append(-999)
self.zvel.append(-999)
self.depth.append(-999)
self.elevation.append(-999)
self.temperature.append(-999)
self.salinity.append(-999)
self.sussed.append(-999)
if self.type == 'RMA2 ':
# WRITE(IRMAFM) TETT,NP,IYRR,((VEL(J,K),J=1,3),K=1,NP),(WSEL(J),J=1,NP),(VDOT(3,K),K=1,NP)
t = self.file.read(12)
if t:
a = unpack('fii', t)
self.time = a[0]
np = int(a[1])
self.year = a[2]
if (np != self.num_nodes):
print("Warning - NP (%d) on this timestep does not match header (%d)" % (np, self.num_nodes))
#b = unpack('%df' % 5 * np, self.file.read(20 * np))
b = array('f')
b.fromfile(self.file, 5 * np)
# b = np.fromfile(self.file, dtype=float,count = 5 * np)
tempA = [(x - 1) * 3 for x in range(1, np + 1)]
tempB = [np * 3 + (x - 1) for x in range(1, np + 1)]
self.xvel.extend([b[i] for i in tempA])
self.yvel.extend([b[i + 1] for i in tempA])
self.depth.extend([b[i + 2] for i in tempA])
self.elevation.extend([b[i] for i in tempB])
if self.type == 'RMA11 ':
self.constit = []
c = 0
# Start at zero to leave an empty array space. Constits numbered 1 .. num_constits
while c <= self.num_constits:
self.constit.append([])
# Put a null into the 0 position so that RMA node numbers are in the same numbered array position.
self.constit[c].append(-999)
c = c + 1
# READ(file1,END=100) TETT1,NQAL,NP,IYRR, ((VEL(K,J),J=1,NP),K=1,3), (wd(j),j=1,np), (wsel(j),j=1,np), ((TCON1(K,J),J=1,NP),K=1,NQAL-5)
t = self.file.read(16)
if t:
a = unpack('fiii', t)
self.time = a[0]
nqal = int(a[1])
np = int(a[2])
self.year = a[3]
if ((nqal - 5) != (self.num_constits)):
print("Warning - NQAL-5 (%d) on this timestep does not match header (%d)" % (
nqal - 5, self.num_constits))
if (np != self.num_nodes):
print("Warning - NP (%d) on this timestep does not match header (%d)" % (np, self.num_nodes))
b = array('f')
b.fromfile(self.file, nqal * np)
#b = unpack('%df' % nqal * np, self.file.read(4 * nqal * np)) #4 because single precision float type have 4 bytes
tempA = [(x - 1) * 3 for x in range(1, np + 1)]
tempB = [np * 3 + (x - 1) for x in range(1, np + 1)]
tempC = [np * 4 + (x - 1) for x in range(1, np + 1)]
self.xvel.extend([b[i] for i in tempA])
self.yvel.extend([b[i + 1] for i in tempA])
self.zvel.extend([b[i + 2] for i in tempA])
self.depth.extend([b[i] for i in tempB])
self.elevation.extend([b[i] for i in tempC])
for c in range(1, self.num_constits + 1):
(self.constit[c].extend([b[np * ((c - 1) + 5) + (x - 1)] for x in range(1, np + 1)]))
if self.type == 'RMA10 ':
# WRITE(IRMAFM) TETT,NP,NDF,NE,IYRR,((VSING(K,J),K=1,NDF),VVEL(J),WSLL(J),J=1,NP),(DFCT(J),J=1,NE),(VSING(7,J),J=1,NP)
# WRITE(IRMAFM) TETT,NP,IYRR,((VEL(J,K),J=1,3),K=1,NP),(WSEL(J),J=1,NP),(VDOT(3,K),K=1,NP)
t = self.file.read(20)
if t:
a = unpack('fiiii', t)
self.time = a[0]
np = a[1]
ndf = 6
ne = a[3]
self.year = a[4]
if (np != self.num_nodes):
print("Warning - NP1 (%d) on this timestep does not match header (%d)" % (np, self.num_nodes))
tempRead = np * (3 + ndf) + ne
b = array('f')
b.fromfile(self.file, tempRead)
# b = numpy.fromfile(self.file.read(4 * tempRead), dtype=float)
#b = unpack('%df' % tempRead, self.file.read(4 * tempRead))
i = 1
while i <= np:
self.xvel.append(b[0 + (i - 1) * 8])
self.yvel.append(b[1 + (i - 1) * 8])
self.depth.append(b[2 + (i - 1) * 8])
self.salinity.append(b[3 + (i - 1) * 8])
self.temperature.append(b[4 + (i - 1) * 8])
self.sussed.append(b[5 + (i - 1) * 8])
self.zvel.append(b[6 + (i - 1) * 8])
self.elevation.append(b[7 + (i - 1) * 8])
i = i + 1
if len(self.xvel) == 1:
# Note that this is a 1 now as we've filled the zero array position
return False
else:
return True
Loading…
Cancel
Save