You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

727 lines
30 KiB
Python

"""This module contains all the functions needed for extracting satellite-derived shorelines (SDS)
Author: Kilian Vos, Water Research Laboratory, University of New South Wales
"""
# load modules
import os
import numpy as np
import matplotlib.pyplot as plt
import pdb
# image processing modules
import skimage.filters as filters
import skimage.exposure as exposure
import skimage.transform as transform
import sklearn.decomposition as decomposition
import skimage.measure as measure
import skimage.morphology as morphology
# machine learning modules
from sklearn.externals import joblib
from shapely.geometry import LineString
# other modules
from osgeo import gdal, ogr, osr
import scipy.interpolate as interpolate
from datetime import datetime, timedelta
import matplotlib.patches as mpatches
import matplotlib.lines as mlines
import matplotlib.cm as cm
from matplotlib import gridspec
from pylab import ginput
import pickle
import simplekml
# own modules
import SDS_tools, SDS_preprocess
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
def nd_index(im1, im2, cloud_mask):
"""
Computes normalised difference index on 2 images (2D), given a cloud mask (2D).
KV WRL 2018
Arguments:
-----------
im1, im2: np.array
Images (2D) with which to calculate the ND index
cloud_mask: np.array
2D cloud mask with True where cloud pixels are
Returns: -----------
im_nd: np.array
Image (2D) containing the ND index
"""
# reshape the cloud mask
vec_mask = cloud_mask.reshape(im1.shape[0] * im1.shape[1])
# initialise with NaNs
vec_nd = np.ones(len(vec_mask)) * np.nan
# reshape the two images
vec1 = im1.reshape(im1.shape[0] * im1.shape[1])
vec2 = im2.reshape(im2.shape[0] * im2.shape[1])
# compute the normalised difference index
temp = np.divide(vec1[~vec_mask] - vec2[~vec_mask],
vec1[~vec_mask] + vec2[~vec_mask])
vec_nd[~vec_mask] = temp
# reshape into image
im_nd = vec_nd.reshape(im1.shape[0], im1.shape[1])
return im_nd
def calculate_features(im_ms, cloud_mask, im_bool):
"""
Calculates a range of features on the image that are used for the supervised classification.
The features include spectral normalized-difference indices and standard deviation of the image.
KV WRL 2018
Arguments:
-----------
im_ms: np.array
RGB + downsampled NIR and SWIR
cloud_mask: np.array
2D cloud mask with True where cloud pixels are
im_bool: np.array
2D array of boolean indicating where on the image to calculate the features
Returns: -----------
features: np.array
matrix containing each feature (columns) calculated for all
the pixels (rows) indicated in im_bool
"""
# add all the multispectral bands
features = np.expand_dims(im_ms[im_bool,0],axis=1)
for k in range(1,im_ms.shape[2]):
feature = np.expand_dims(im_ms[im_bool,k],axis=1)
features = np.append(features, feature, axis=-1)
# NIR-G
im_NIRG = nd_index(im_ms[:,:,3], im_ms[:,:,1], cloud_mask)
features = np.append(features, np.expand_dims(im_NIRG[im_bool],axis=1), axis=-1)
# SWIR-G
im_SWIRG = nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask)
features = np.append(features, np.expand_dims(im_SWIRG[im_bool],axis=1), axis=-1)
# NIR-R
im_NIRR = nd_index(im_ms[:,:,3], im_ms[:,:,2], cloud_mask)
features = np.append(features, np.expand_dims(im_NIRR[im_bool],axis=1), axis=-1)
# SWIR-NIR
im_SWIRNIR = nd_index(im_ms[:,:,4], im_ms[:,:,3], cloud_mask)
features = np.append(features, np.expand_dims(im_SWIRNIR[im_bool],axis=1), axis=-1)
# B-R
im_BR = nd_index(im_ms[:,:,0], im_ms[:,:,2], cloud_mask)
features = np.append(features, np.expand_dims(im_BR[im_bool],axis=1), axis=-1)
# calculate standard deviation of individual bands
for k in range(im_ms.shape[2]):
im_std = SDS_tools.image_std(im_ms[:,:,k], 1)
features = np.append(features, np.expand_dims(im_std[im_bool],axis=1), axis=-1)
# calculate standard deviation of the spectral indices
im_std = SDS_tools.image_std(im_NIRG, 1)
features = np.append(features, np.expand_dims(im_std[im_bool],axis=1), axis=-1)
im_std = SDS_tools.image_std(im_SWIRG, 1)
features = np.append(features, np.expand_dims(im_std[im_bool],axis=1), axis=-1)
im_std = SDS_tools.image_std(im_NIRR, 1)
features = np.append(features, np.expand_dims(im_std[im_bool],axis=1), axis=-1)
im_std = SDS_tools.image_std(im_SWIRNIR, 1)
features = np.append(features, np.expand_dims(im_std[im_bool],axis=1), axis=-1)
im_std = SDS_tools.image_std(im_BR, 1)
features = np.append(features, np.expand_dims(im_std[im_bool],axis=1), axis=-1)
return features
def classify_image_NN(im_ms, im_extra, cloud_mask, min_beach_area, satname):
"""
Classifies every pixel in the image in one of 4 classes:
- sand --> label = 1
- whitewater (breaking waves and swash) --> label = 2
- water --> label = 3
- other (vegetation, buildings, rocks...) --> label = 0
The classifier is a Neural Network, trained on several sites in New South Wales, Australia.
KV WRL 2018
Arguments:
-----------
im_ms: np.array
Pansharpened RGB + downsampled NIR and SWIR
im_extra:
only used for Landsat 7 and 8 where im_extra is the panchromatic band
cloud_mask: np.array
2D cloud mask with True where cloud pixels are
min_beach_area: int
minimum number of pixels that have to be connected in the SAND class
Returns: -----------
im_classif: np.array
2D image containing labels
im_labels: np.array of booleans
3D image containing a boolean image for each class (im_classif == label)
"""
if satname == 'S2':
# load classifier (special classifier for Sentinel-2 images)
clf = joblib.load(os.path.join(os.getcwd(), 'classifiers', 'NN_4classes_S2.pkl'))
else:
# load classifier (special classifier for Landsat images)
clf = joblib.load(os.path.join(os.getcwd(), 'classifiers', 'NN_4classes_Landsat.pkl'))
# calculate features
vec_features = calculate_features(im_ms, cloud_mask, np.ones(cloud_mask.shape).astype(bool))
vec_features[np.isnan(vec_features)] = 1e-9 # NaN values are create when std is too close to 0
# remove NaNs and cloudy pixels
vec_cloud = cloud_mask.reshape(cloud_mask.shape[0]*cloud_mask.shape[1])
vec_nan = np.any(np.isnan(vec_features), axis=1)
vec_mask = np.logical_or(vec_cloud, vec_nan)
vec_features = vec_features[~vec_mask, :]
# classify pixels
labels = clf.predict(vec_features)
# recompose image
vec_classif = np.nan*np.ones((cloud_mask.shape[0]*cloud_mask.shape[1]))
vec_classif[~vec_mask] = labels
im_classif = vec_classif.reshape((cloud_mask.shape[0], cloud_mask.shape[1]))
# create a stack of boolean images for each label
im_sand = im_classif == 1
im_swash = im_classif == 2
im_water = im_classif == 3
# remove small patches of sand or water that could be around the image (usually noise)
im_sand = morphology.remove_small_objects(im_sand, min_size=min_beach_area, connectivity=2)
im_water = morphology.remove_small_objects(im_water, min_size=min_beach_area, connectivity=2)
im_labels = np.stack((im_sand,im_swash,im_water), axis=-1)
return im_classif, im_labels
def find_wl_contours1(im_ndwi, cloud_mask):
"""
Traditional method for shorelien detection.
Finds the water line by thresholding the Normalized Difference Water Index and applying
the Marching Squares Algorithm to contour the iso-value corresponding to the threshold.
KV WRL 2018
Arguments:
-----------
im_ndwi: np.ndarray
Image (2D) with the NDWI (water index)
cloud_mask: np.ndarray
2D cloud mask with True where cloud pixels are
Returns: -----------
contours_wl: list of np.arrays
contains the (row,column) coordinates of the contour lines
"""
# reshape image to vector
vec_ndwi = im_ndwi.reshape(im_ndwi.shape[0] * im_ndwi.shape[1])
vec_mask = cloud_mask.reshape(cloud_mask.shape[0] * cloud_mask.shape[1])
vec = vec_ndwi[~vec_mask]
# apply otsu's threshold
vec = vec[~np.isnan(vec)]
t_otsu = filters.threshold_otsu(vec)
# use Marching Squares algorithm to detect contours on ndwi image
contours = measure.find_contours(im_ndwi, t_otsu)
# remove contours that contain NaNs (due to cloud pixels in the contour)
contours_nonans = []
for k in range(len(contours)):
if np.any(np.isnan(contours[k])):
index_nan = np.where(np.isnan(contours[k]))[0]
contours_temp = np.delete(contours[k], index_nan, axis=0)
if len(contours_temp) > 1:
contours_nonans.append(contours_temp)
else:
contours_nonans.append(contours[k])
contours = contours_nonans
return contours
def find_wl_contours2(im_ms, im_labels, cloud_mask, buffer_size, is_reference_sl):
"""
New robust method for extracting shorelines. Incorporates the classification component to
refine the treshold and make it specific to the sand/water interface.
KV WRL 2018
Arguments:
-----------
im_ms: np.array
RGB + downsampled NIR and SWIR
im_labels: np.array
3D image containing a boolean image for each class in the order (sand, swash, water)
cloud_mask: np.array
2D cloud mask with True where cloud pixels are
buffer_size: int
size of the buffer around the sandy beach over which the pixels are considered in the
thresholding algorithm.
is_reference_sl: boolean
True if there is a reference shoreline, False otherwise
Returns: -----------
contours_wi: list of np.arrays
contains the (row,column) coordinates of the contour lines extracted from the
NDWI (Normalized Difference Water Index) image
contours_mwi: list of np.arrays
contains the (row,column) coordinates of the contour lines extracted from the
MNDWI (Modified Normalized Difference Water Index) image
"""
nrows = cloud_mask.shape[0]
ncols = cloud_mask.shape[1]
# calculate Normalized Difference Modified Water Index (SWIR - G)
im_mwi = nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask)
# calculate Normalized Difference Modified Water Index (NIR - G)
im_wi = nd_index(im_ms[:,:,3], im_ms[:,:,1], cloud_mask)
# stack indices together
im_ind = np.stack((im_wi, im_mwi), axis=-1)
vec_ind = im_ind.reshape(nrows*ncols,2)
# reshape labels into vectors
vec_sand = im_labels[:,:,0].reshape(ncols*nrows)
vec_water = im_labels[:,:,2].reshape(ncols*nrows)
# create a buffer around the sandy beach
se = morphology.disk(buffer_size)
im_buffer = morphology.binary_dilation(im_labels[:,:,0], se)
vec_buffer = im_buffer.reshape(nrows*ncols)
# select water/sand/swash pixels that are within the buffer
int_water = vec_ind[np.logical_and(vec_buffer,vec_water),:]
int_sand = vec_ind[np.logical_and(vec_buffer,vec_sand),:]
# make sure both classes have the same number of pixels before thresholding
if len(int_water) > 0 and len(int_sand) > 0:
if np.argmin([int_sand.shape[0],int_water.shape[0]]) == 1:
int_sand = int_sand[np.random.choice(int_sand.shape[0],int_water.shape[0], replace=False),:]
else:
int_water = int_water[np.random.choice(int_water.shape[0],int_sand.shape[0], replace=False),:]
# threshold the sand/water intensities
int_all = np.append(int_water,int_sand, axis=0)
t_mwi = filters.threshold_otsu(int_all[:,0])
t_wi = filters.threshold_otsu(int_all[:,1])
# find contour with MS algorithm
im_wi_buffer = np.copy(im_wi)
im_wi_buffer[~im_buffer] = np.nan
im_mwi_buffer = np.copy(im_mwi)
im_mwi_buffer[~im_buffer] = np.nan
if is_reference_sl: # if there is a reference_shoreline map the shoreline on the entire image
contours_wi = measure.find_contours(im_wi, t_wi)
contours_mwi = measure.find_contours(im_mwi, t_mwi)
else: # otherwise only map the shoreline along the sandy pixels
contours_wi = measure.find_contours(im_wi_buffer, t_wi)
contours_mwi = measure.find_contours(im_mwi_buffer, t_mwi)
# remove contour points that are NaNs (around clouds)
contours = contours_wi
contours_nonans = []
for k in range(len(contours)):
if np.any(np.isnan(contours[k])):
index_nan = np.where(np.isnan(contours[k]))[0]
contours_temp = np.delete(contours[k], index_nan, axis=0)
if len(contours_temp) > 1:
contours_nonans.append(contours_temp)
else:
contours_nonans.append(contours[k])
contours_wi = contours_nonans
# repeat for MNDWI contours
contours = contours_mwi
contours_nonans = []
for k in range(len(contours)):
if np.any(np.isnan(contours[k])):
index_nan = np.where(np.isnan(contours[k]))[0]
contours_temp = np.delete(contours[k], index_nan, axis=0)
if len(contours_temp) > 1:
contours_nonans.append(contours_temp)
else:
contours_nonans.append(contours[k])
contours_mwi = contours_nonans
return contours_wi, contours_mwi
def process_shoreline(contours, georef, image_epsg, settings):
"""
Converts the contours from image coordinates to world coordinates. This function also removes
the contours that are too small to be a shoreline (based on the parameter
settings['min_length_sl'])
KV WRL 2018
Arguments:
-----------
contours: np.array or list of np.array
image contours as detected by the function find_contours
georef: np.array
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale]
image_epsg: int
spatial reference system of the image from which the contours were extracted
settings: dict
contains important parameters for processing the shoreline:
output_epsg: output spatial reference system
min_length_sl: minimum length of shoreline perimeter to be kept (in meters)
reference_sl: [optional] reference shoreline coordinates
max_dist_ref: max distance (in meters) allowed from a reference shoreline
Returns: -----------
shoreline: np.array
array of points with the X and Y coordinates of the shoreline
"""
# convert pixel coordinates to world coordinates
contours_world = SDS_tools.convert_pix2world(contours, georef)
# convert world coordinates to desired spatial reference system
contours_epsg = SDS_tools.convert_epsg(contours_world, image_epsg, settings['output_epsg'])
# remove contours that have a perimeter < min_length_wl (provided in settings dict)
# this enable to remove the very small contours that do not correspond to the shoreline
contours_long = []
for l, wl in enumerate(contours_epsg):
coords = [(wl[k,0], wl[k,1]) for k in range(len(wl))]
a = LineString(coords) # shapely LineString structure
if a.length >= settings['min_length_sl']:
contours_long.append(wl)
# format points into np.array
x_points = np.array([])
y_points = np.array([])
for k in range(len(contours_long)):
x_points = np.append(x_points,contours_long[k][:,0])
y_points = np.append(y_points,contours_long[k][:,1])
contours_array = np.transpose(np.array([x_points,y_points]))
# if reference shoreline has been manually digitised
if 'reference_shoreline' in settings.keys():
# only keep the points that are at a certain distance (define in settings) from the
# reference shoreline, enables to avoid false detections and remove obvious outliers
temp = np.zeros((len(contours_array))).astype(bool)
for k in range(len(settings['reference_shoreline'])):
temp = np.logical_or(np.linalg.norm(contours_array - settings['reference_shoreline'][k,[0,1]],
axis=1) < settings['max_dist_ref'], temp)
shoreline = contours_array[temp]
else:
shoreline = contours_array
return shoreline
def show_detection(im_ms, cloud_mask, im_labels, shoreline,image_epsg, georef,
settings, date, satname):
"""
Shows the detected shoreline to the user for visual quality control. The user can select "keep"
if the shoreline detection is correct or "skip" if it is incorrect.
KV WRL 2018
Arguments:
-----------
im_ms: np.array
RGB + downsampled NIR and SWIR
cloud_mask: np.array
2D cloud mask with True where cloud pixels are
im_labels: np.array
3D image containing a boolean image for each class in the order (sand, swash, water)
shoreline: np.array
array of points with the X and Y coordinates of the shoreline
image_epsg: int
spatial reference system of the image from which the contours were extracted
georef: np.array
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale]
settings: dict
contains important parameters for processing the shoreline
date: string
date at which the image was taken
satname: string
indicates the satname (L5,L7,L8 or S2)
Returns: -----------
skip_image: boolean
True if the user wants to skip the image, False otherwise.
"""
sitename = settings['inputs']['sitename']
# subfolder where the .jpg file is stored if the user accepts the shoreline detection
filepath = os.path.join(os.getcwd(), 'data', sitename, 'jpg_files', 'detection')
im_RGB = SDS_preprocess.rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9)
# compute classified image
im_class = np.copy(im_RGB)
cmap = cm.get_cmap('tab20c')
colorpalette = cmap(np.arange(0,13,1))
colours = np.zeros((3,4))
colours[0,:] = colorpalette[5]
colours[1,:] = np.array([204/255,1,1,1])
colours[2,:] = np.array([0,91/255,1,1])
for k in range(0,im_labels.shape[2]):
im_class[im_labels[:,:,k],0] = colours[k,0]
im_class[im_labels[:,:,k],1] = colours[k,1]
im_class[im_labels[:,:,k],2] = colours[k,2]
# compute MNDWI grayscale image
im_mwi = nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask)
# transform world coordinates of shoreline into pixel coordinates
# use try/except in case there are no coordinates to be transformed (shoreline = [])
try:
sl_pix = SDS_tools.convert_world2pix(SDS_tools.convert_epsg(shoreline,
settings['output_epsg'],
image_epsg)[:,[0,1]], georef)
except:
# if try fails, just add nan into the shoreline vector so the next parts can still run
sl_pix = np.array([[np.nan, np.nan],[np.nan, np.nan]])
# according to the image shape, decide whether it is better to have the images in the subplot
# in different rows or different columns
fig = plt.figure()
if im_RGB.shape[1] > 2*im_RGB.shape[0]:
# vertical subplots
gs = gridspec.GridSpec(3, 1)
gs.update(bottom=0.03, top=0.97, left=0.03, right=0.97)
ax1 = fig.add_subplot(gs[0,0])
ax2 = fig.add_subplot(gs[1,0])
ax3 = fig.add_subplot(gs[2,0])
else:
# horizontal subplots
gs = gridspec.GridSpec(1, 3)
gs.update(bottom=0.05, top=0.95, left=0.05, right=0.95)
ax1 = fig.add_subplot(gs[0,0])
ax2 = fig.add_subplot(gs[0,1])
ax3 = fig.add_subplot(gs[0,2])
# create image 1 (RGB)
ax1.imshow(im_RGB)
ax1.plot(sl_pix[:,0], sl_pix[:,1], 'k.', markersize=3)
ax1.axis('off')
btn_keep = plt.text(0, 0.9, 'keep', size=16, ha="left", va="top",
transform=ax1.transAxes,
bbox=dict(boxstyle="square", ec='k',fc='w'))
btn_skip = plt.text(1, 0.9, 'skip', size=16, ha="right", va="top",
transform=ax1.transAxes,
bbox=dict(boxstyle="square", ec='k',fc='w'))
ax1.set_title(sitename + ' ' + date + ' ' + satname, fontweight='bold', fontsize=16)
# create image 2 (classification)
ax2.imshow(im_class)
ax2.plot(sl_pix[:,0], sl_pix[:,1], 'k.', markersize=3)
ax2.axis('off')
orange_patch = mpatches.Patch(color=colours[0,:], label='sand')
white_patch = mpatches.Patch(color=colours[1,:], label='whitewater')
blue_patch = mpatches.Patch(color=colours[2,:], label='water')
black_line = mlines.Line2D([],[],color='k',linestyle='-', label='shoreline')
ax2.legend(handles=[orange_patch,white_patch,blue_patch, black_line],
bbox_to_anchor=(1, 0.5), fontsize=10)
# create image 3 (MNDWI)
ax3.imshow(im_mwi, cmap='bwr')
ax3.plot(sl_pix[:,0], sl_pix[:,1], 'k.', markersize=3)
ax3.axis('off')
# additional options
# ax1.set_anchor('W')
# ax2.set_anchor('W')
# cb = plt.colorbar()
# cb.ax.tick_params(labelsize=10)
# cb.set_label('MNDWI values')
# ax3.set_anchor('W')
fig.set_size_inches([12.53, 9.3])
mng = plt.get_current_fig_manager()
mng.window.showMaximized()
# wait for user's selection: <keep> or <skip>
pt = ginput(n=1, timeout=100000, show_clicks=True)
pt = np.array(pt)
# if user clicks around the <skip> button, return skip_image = True
if pt[0][0] > im_ms.shape[1]/2:
skip_image = True
plt.close()
else:
skip_image = False
btn_skip.set_visible(False)
btn_keep.set_visible(False)
fig.savefig(os.path.join(filepath, date + '_' + satname + '.jpg'), dpi=150)
plt.close()
return skip_image
def extract_shorelines(metadata, settings):
"""
Extracts shorelines from satellite images.
KV WRL 2018
Arguments:
-----------
metadata: dict
contains all the information about the satellite images that were downloaded
settings: dict
contains the following fields:
sitename: str
String containig the name of the site
cloud_mask_issue: boolean
True if there is an issue with the cloud mask and sand pixels are being masked on the images
buffer_size: int
size of the buffer (m) around the sandy beach over which the pixels are considered in the
thresholding algorithm
min_beach_area: int
minimum allowable object area (in metres^2) for the class 'sand'
cloud_thresh: float
value between 0 and 1 defining the maximum percentage of cloud cover allowed in the images
output_epsg: int
output spatial reference system as EPSG code
check_detection: boolean
True to show each invidual detection and let the user validate the mapped shoreline
Returns:
-----------
output: dict
contains the extracted shorelines and corresponding dates.
"""
sitename = settings['inputs']['sitename']
# initialise output structure
output = dict([])
# create a subfolder to store the .jpg images showing the detection
filepath_jpg = os.path.join(os.getcwd(), 'data', sitename, 'jpg_files', 'detection')
try:
os.makedirs(filepath_jpg)
except:
print('')
# loop through satellite list
for satname in metadata.keys():
# get images
filepath = SDS_tools.get_filepath(settings['inputs'],satname)
filenames = metadata[satname]['filenames']
# initialise some variables
output_timestamp = [] # datetime at which the image was acquired (UTC time)
output_shoreline = [] # vector of shoreline points
output_filename = [] # filename of the images from which the shorelines where derived
output_cloudcover = [] # cloud cover of the images
output_geoaccuracy = []# georeferencing accuracy of the images
output_idxkeep = [] # index that were kept during the analysis (cloudy images are skipped)
# convert settings['min_beach_area'] and settings['buffer_size'] from metres to pixels
if satname in ['L5','L7','L8']:
pixel_size = 15
elif satname == 'S2':
pixel_size = 10
buffer_size_pixels = np.ceil(settings['buffer_size']/pixel_size)
min_beach_area_pixels = np.ceil(settings['min_beach_area']/pixel_size**2)
# loop through the images
for i in range(len(filenames)):
# get image filename
fn = SDS_tools.get_filenames(filenames[i],filepath, satname)
# preprocess image (cloud mask + pansharpening/downsampling)
im_ms, georef, cloud_mask, im_extra, imQA = SDS_preprocess.preprocess_single(fn, satname, settings['cloud_mask_issue'])
# get image spatial reference system (epsg code) from metadata dict
image_epsg = metadata[satname]['epsg'][i]
# calculate cloud cover
cloud_cover = np.divide(sum(sum(cloud_mask.astype(int))),
(cloud_mask.shape[0]*cloud_mask.shape[1]))
# skip image if cloud cover is above threshold
if cloud_cover > settings['cloud_thresh']:
continue
# classify image in 4 classes (sand, whitewater, water, other) with NN classifier
im_classif, im_labels = classify_image_NN(im_ms, im_extra, cloud_mask,
min_beach_area_pixels, satname)
# extract water line contours
# if there aren't any sandy pixels, use find_wl_contours1 (traditional method),
# otherwise use find_wl_contours2 (enhanced method with classification)
try: # use try/except structure for long runs
if sum(sum(im_labels[:,:,0])) == 0 :
# compute MNDWI (SWIR-Green normalized index) grayscale image
im_mndwi = nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask)
# find water contourson MNDWI grayscale image
contours_mwi = find_wl_contours1(im_mndwi, cloud_mask)
else:
# use classification to refine threshold and extract sand/water interface
is_reference_sl = 'reference_shoreline' in settings.keys()
contours_wi, contours_mwi = find_wl_contours2(im_ms, im_labels,
cloud_mask, buffer_size_pixels, is_reference_sl)
except:
continue
# process water contours into shorelines
shoreline = process_shoreline(contours_mwi, georef, image_epsg, settings)
if settings['check_detection']:
date = filenames[i][:10]
skip_image = show_detection(im_ms, cloud_mask, im_labels, shoreline,
image_epsg, georef, settings, date, satname)
if skip_image:
continue
# fill and save outputput structure
output_timestamp.append(metadata[satname]['dates'][i])
output_shoreline.append(shoreline)
output_filename.append(filenames[i])
output_cloudcover.append(cloud_cover)
output_geoaccuracy.append(metadata[satname]['acc_georef'][i])
output_idxkeep.append(i)
output[satname] = {
'timestamp': output_timestamp,
'shoreline': output_shoreline,
'filename': output_filename,
'cloudcover': output_cloudcover,
'geoaccuracy': output_geoaccuracy,
'idxkeep': output_idxkeep
}
# add some metadata
output['meta'] = {
'timestamp': 'UTC time',
'shoreline': 'coordinate system epsg : ' + str(settings['output_epsg']),
'cloudcover': 'calculated on the cropped image',
'geoaccuracy': 'RMSE error based on GCPs',
'idxkeep': 'indices of the images that were kept to extract a shoreline'
}
# change the format to have one list sorted by date with all the shorelines (easier to use)
output = SDS_tools.merge_output(output)
# save outputput structure as output.pkl
filepath = os.path.join(os.getcwd(), 'data', sitename)
with open(os.path.join(filepath, sitename + '_output.pkl'), 'wb') as f:
pickle.dump(output, f)
# save output as kml for GIS applications
kml = simplekml.Kml()
for i in range(len(output['shorelines'])):
if len(output['shorelines'][i]) == 0:
continue
sl = output['shorelines'][i]
date = output['dates'][i]
newline = kml.newlinestring(name= date.strftime('%Y-%m-%d'))
newline.coords = sl
newline.description = satname + ' shoreline' + '\n' + 'acquired at ' + date.strftime('%H:%M:%S') + ' UTC'
kml.save(os.path.join(filepath, sitename + '_output.kml'))
return output