# -*- coding: utf-8 -*- """ Created on Thu Mar 1 14:32:08 2018 @author: z5030440 Main code to extract shorelines from Landsat imagery """ # Preamble import ee import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np import pandas as pd from datetime import datetime import pickle import pdb import pytz # image processing modules import skimage.filters as filters import skimage.exposure as exposure import skimage.transform as transform import sklearn.decomposition as decomposition import skimage.morphology as morphology import skimage.measure as measure # my functions import functions.utils as utils import functions.sds as sds np.seterr(all='ignore') # raise/ignore divisions by 0 and nans ee.Initialize() #%% Select images # parameters plot_bool = False # if you want the plots prob_high = 99.9 # upper probability to clip and rescale pixel intensity min_contour_points = 100 # minimum number of points contained in each water line output_epsg = 28356 # GDA94 / MGA Zone 56 cloud_threshold = 0.8 # select collection input_col = ee.ImageCollection('LANDSAT/LC08/C01/T1_RT_TOA') # location (Narrabeen-Collaroy beach) rect_narra = [[[151.3473129272461,-33.69035274454718], [151.2820816040039,-33.68206818063878], [151.27281188964844,-33.74775138989556], [151.3425064086914,-33.75231878701767], [151.3473129272461,-33.69035274454718]]]; #rect_narra = [[[151.301454, -33.700754], # [151.311453, -33.702075], # [151.307237, -33.739761], # [151.294220, -33.736329], # [151.301454, -33.700754]]]; # Dates start_date = '2016-01-01' end_date = '2016-12-31' # filter by location flt_col = input_col.filterBounds(ee.Geometry.Polygon(rect_narra)).filterDate(start_date, end_date) n_img = flt_col.size().getInfo() print('Number of images covering Narrabeen:', n_img) im_all = flt_col.getInfo().get('features') #%% Extract shorelines metadata = {'timestamp':[], 'date_acquired':[], 'cloud_cover':[], 'geom_rmse_model':[], 'gcp_model':[], 'quality':[], 'sun_azimuth':[], 'sun_elevation':[]} skipped_images = np.zeros((n_img,1)).astype(bool) output_wl = [] # loop through all images for i in range(n_img): # find each image in ee database im = ee.Image(im_all[i].get('id')) # load image as np.array im_pan, im_ms, im_cloud, crs, meta = sds.read_eeimage(im, rect_narra, plot_bool) # if 100% cloud if sum(sum(im_cloud.astype(int)))/(im_cloud.shape[0]*im_cloud.shape[1]) > cloud_threshold: skipped_images[i] = True continue # store metadata of each image in dict metadata['timestamp'].append(meta['timestamp']) metadata['date_acquired'].append(meta['date_acquired']) metadata['cloud_cover'].append(sum(sum(im_cloud.astype(int)))/(im_cloud.shape[0]*im_cloud.shape[1])) metadata['geom_rmse_model'].append(meta['geom_rmse_model']) metadata['gcp_model'].append(meta['gcp_model']) metadata['quality'].append(meta['quality']) metadata['sun_azimuth'].append(meta['sun_azimuth']) metadata['sun_elevation'].append(meta['sun_elevation']) # rescale intensities im_ms = sds.rescale_image_intensity(im_ms, im_cloud, prob_high, plot_bool) im_pan = sds.rescale_image_intensity(im_pan, im_cloud, prob_high, plot_bool) # pansharpen rgb image im_ms_ps = sds.pansharpen(im_ms[:,:,[0,1,2]], im_pan, im_cloud, plot_bool) # add down-sized bands for NIR and SWIR (since pansharpening is not possible) im_ms_ps = np.append(im_ms_ps, im_ms[:,:,[3,4]], axis=2) # calculate NDWI im_ndwi = sds.nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,1], im_cloud, plot_bool) # edge detection wl_pix = sds.find_wl_contours(im_ndwi, im_cloud, min_contour_points, plot_bool) # convert from pixels to world coordinates wl_coords = sds.convert_pix2world(wl_pix, crs['crs_15m']) # convert to output epsg spatial reference wl = sds.convert_epsg(wl_coords, crs['epsg_code'], output_epsg) output_wl.append(wl) print(i) # generate datetimes #fmt = '%Y-%m-%d %H:%M:%S %Z%z' #au_tz = pytz.timezone('Australia/Sydney') dt = []; t = metadata['timestamp'] for k in range(len(t)): dt.append(datetime.fromtimestamp(t[k]/1000, tz=pytz.utc)) # save outputs data = metadata.copy() data.update({'dt':dt}) data.update({'contours':output_wl}) with open('data_2016.pkl', 'wb') as f: pickle.dump(data, f) #%% Load data #with open('data_2016.pkl', 'rb') as f: # data = pickle.load(f) # load backgroud image i = 0 im = ee.Image(im_all[i].get('id')) im_pan, im_ms, im_cloud, crs, meta = sds.read_eeimage(im, rect_narra, plot_bool) im_ms = sds.rescale_image_intensity(im_ms, im_cloud, prob_high, plot_bool) im_pan = sds.rescale_image_intensity(im_pan, im_cloud, prob_high, plot_bool) im_ms_ps = sds.pansharpen(im_ms[:,:,[0,1,2]], im_pan, im_cloud, plot_bool) plt.figure() plt.imshow(im_ms_ps[:,:,[2,1,0]]) plt.axis('image') plt.title('2016 shorelines') n = len(data['cloud_cover']) idx_best = [] # remove overlapping images, based on cloud cover for i in range(n): date_im = data['date_acquired'][i] idx = np.isin(data['date_acquired'], date_im) best = np.where(idx)[0][np.argmin(np.array(data['cloud_cover'])[idx])] if ~np.isin(best, idx_best): idx_best.append(best) point_narra = np.array([342500, 6266990]) plt.figure() plt.axis('equal') plt.grid() cmap = cm.get_cmap('jet') colours = cmap(np.linspace(0, 1, num=len(idx_best))) for i, idx in enumerate(idx_best): for j in range(len(data['contours'][i])): if np.any(np.linalg.norm(data['contours'][i][j][:,[0,1]] - point_narra, axis=1) < 200): plt.plot(data['contours'][i][j][:,0], data['contours'][i][j][:,1], label=str(data['date_acquired'][i]), linewidth=2, color=colours[i,:]) plt.legend() plt.show()