""" This module contains functions to analyze the 2D shorelines along shore-normal transects Author: Kilian Vos, Water Research Laboratory, University of New South Wales """ # load modules import os import numpy as np import matplotlib.pyplot as plt import pdb # other modules import skimage.transform as transform from pylab import ginput import geopandas as gpd # CoastSat modules from coastsat import SDS_tools def create_transect(origin, orientation, length): """ Create a transect given an origin, orientation and length. Points are spaced at 1m intervals. KV WRL 2018 Arguments: ----------- origin: np.array contains the X and Y coordinates of the origin of the transect orientation: int angle of the transect (anti-clockwise from North) in degrees length: int length of the transect in metres Returns: ----------- transect: np.array contains the X and Y coordinates of the transect """ # origin of the transect x0 = origin[0] y0 = origin[1] # orientation of the transect phi = (90 - orientation)*np.pi/180 # create a vector with points at 1 m intervals x = np.linspace(0,length,length+1) y = np.zeros(len(x)) coords = np.zeros((len(x),2)) coords[:,0] = x coords[:,1] = y # translate and rotate the vector using the origin and orientation tf = transform.EuclideanTransform(rotation=phi, translation=(x0,y0)) transect = tf(coords) return transect def draw_transects(output, settings): """ Draw shore-normal transects interactively on top of the mapped shorelines Arguments: ----------- output: dict contains the extracted shorelines and corresponding metadata settings: dict with the following keys 'inputs': dict input parameters (sitename, filepath, polygon, dates, sat_list) Returns: ----------- transects: dict contains the X and Y coordinates of all the transects drawn. Also saves the coordinates as a .geojson as well as a .jpg figure showing the location of the transects. """ sitename = settings['inputs']['sitename'] filepath = os.path.join(settings['inputs']['filepath'], sitename) # plot the mapped shorelines fig1 = plt.figure() ax1 = fig1.add_subplot(111) ax1.axis('equal') ax1.set_xlabel('Eastings [m]') ax1.set_ylabel('Northings [m]') ax1.grid(linestyle=':', color='0.5') for i in range(len(output['shorelines'])): sl = output['shorelines'][i] date = output['dates'][i] ax1.plot(sl[:, 0], sl[:, 1], '.', markersize=3, label=date.strftime('%d-%m-%Y')) # ax1.legend() fig1.set_tight_layout(True) mng = plt.get_current_fig_manager() mng.window.showMaximized() ax1.set_title('Click two points to define each transect (first point is the origin of the transect).\n'+ 'When all transects have been defined, click on ', fontsize=16) # initialise transects dict transects = dict([]) counter = 0 # loop until user breaks it by click while 1: # let user click two points pts = ginput(n=2, timeout=1e9) if len(pts) > 0: origin = pts[0] # if user presses , no points are selected else: # save figure as .jpg fig1.gca().set_title('Transect locations', fontsize=16) fig1.savefig(os.path.join(filepath, 'jpg_files', sitename + '_transect_locations.jpg'), dpi=200) plt.title('Transect coordinates saved as ' + sitename + '_transects.geojson') plt.draw() # wait 3 seconds for user to visualise the transects that are saved ginput(n=1, timeout=3, show_clicks=True) plt.close(fig1) # break the loop break # add selectect points to the transect dict counter = counter + 1 transect = np.array([pts[0], pts[1]]) # alternative of making the transect the origin, orientation and length # temp = np.array(pts[1]) - np.array(origin) # phi = np.arctan2(temp[1], temp[0]) # orientation = -(phi*180/np.pi - 90) # length = np.linalg.norm(temp) # transect = create_transect(origin, orientation, length) transects[str(counter)] = transect # plot the transects on the figure ax1.plot(transect[:,0], transect[:,1], 'b-', lw=2.5) ax1.plot(transect[0,0], transect[0,1], 'rx', markersize=10) ax1.text(transect[-1,0], transect[-1,1], str(counter), size=16, bbox=dict(boxstyle="square", ec='k',fc='w')) plt.draw() # save transects.geojson gdf = SDS_tools.transects_to_gdf(transects) # set projection gdf.crs = {'init':'epsg:'+str(settings['output_epsg'])} # save as geojson gdf.to_file(os.path.join(filepath, sitename + '_transects.geojson'), driver='GeoJSON', encoding='utf-8') # print the location of the files print('Transect locations saved in ' + filepath) return transects def compute_intersection(output, transects, settings): """ Computes the intersection between the 2D shorelines and the shore-normal. transects. It returns time-series of cross-shore distance along each transect. Arguments: ----------- output: dict contains the extracted shorelines and corresponding metadata transects: dict contains the X and Y coordinates of each transect settings: dict with the following keys 'along_dist': int alongshore distance considered caluclate the intersection Returns: ----------- cross_dist: dict time-series of cross-shore distance along each of the transects. Not tidally corrected. """ shorelines = output['shorelines'] along_dist = settings['along_dist'] # initialise variables chainage_mtx = np.zeros((len(shorelines),len(transects),6)) idx_points = [] for i in range(len(shorelines)): sl = shorelines[i] idx_points_all = [] for j,key in enumerate(list(transects.keys())): # compute rotation matrix X0 = transects[key][0,0] Y0 = transects[key][0,1] temp = np.array(transects[key][-1,:]) - np.array(transects[key][0,:]) phi = np.arctan2(temp[1], temp[0]) Mrot = np.array([[np.cos(phi), np.sin(phi)],[-np.sin(phi), np.cos(phi)]]) # calculate point to line distance between shoreline points and the transect p1 = np.array([X0,Y0]) p2 = transects[key][-1,:] d_line = np.abs(np.cross(p2-p1,sl-p1)/np.linalg.norm(p2-p1)) # calculate the distance between shoreline points and the origin of the transect d_origin = np.array([np.linalg.norm(sl[k,:] - p1) for k in range(len(sl))]) # find the shoreline points that are close to the transects and to the origin # the distance to the origin is hard-coded here to 1 km idx_dist = np.logical_and(d_line <= along_dist, d_origin <= 1000) # find the shoreline points that are in the direction of the transect (within 90 degrees) temp_sl = sl - np.array(transects[key][0,:]) phi_sl = np.array([np.arctan2(temp_sl[k,1], temp_sl[k,0]) for k in range(len(temp_sl))]) diff_angle = (phi - phi_sl) idx_angle = np.abs(diff_angle) < np.pi/2 # combine the transects that are close in distance and close in orientation idx_close = np.where(np.logical_and(idx_dist,idx_angle))[0] idx_points_all.append(idx_close) # in case there are no shoreline points close to the transect if len(idx_close) == 0: chainage_mtx[i,j,:] = np.tile(np.nan,(1,6)) else: # change of base to shore-normal coordinate system xy_close = np.array([sl[idx_close,0],sl[idx_close,1]]) - np.tile(np.array([[X0], [Y0]]), (1,len(sl[idx_close]))) xy_rot = np.matmul(Mrot, xy_close) # compute mean, median, max, min and std of chainage position n_points = len(xy_rot[0,:]) mean_cross = np.nanmean(xy_rot[0,:]) median_cross = np.nanmedian(xy_rot[0,:]) max_cross = np.nanmax(xy_rot[0,:]) min_cross = np.nanmin(xy_rot[0,:]) std_cross = np.nanstd(xy_rot[0,:]) # store all statistics chainage_mtx[i,j,:] = np.array([mean_cross, median_cross, max_cross, min_cross, n_points, std_cross]) # store the indices of the shoreline points that were used idx_points.append(idx_points_all) # format into dictionnary chainage = dict([]) chainage['mean'] = chainage_mtx[:,:,0] chainage['median'] = chainage_mtx[:,:,1] chainage['max'] = chainage_mtx[:,:,2] chainage['min'] = chainage_mtx[:,:,3] chainage['npoints'] = chainage_mtx[:,:,4] chainage['std'] = chainage_mtx[:,:,5] chainage['idx_points'] = idx_points # only return the median cross_dist = dict([]) for j,key in enumerate(list(transects.keys())): cross_dist[key] = chainage['median'][:,j] return cross_dist