#==========================================================# # Shoreline extraction from satellite images #==========================================================# # Kilian Vos WRL 2018 #%% 1. Initial settings # load modules import os import numpy as np import pickle import warnings warnings.filterwarnings("ignore") import matplotlib.pyplot as plt from coastsat import SDS_download, SDS_preprocess, SDS_shoreline, SDS_tools, SDS_transects # region of interest (longitude, latitude in WGS84) polygon = [[[151.301454, -33.700754], [151.311453, -33.702075], [151.307237, -33.739761], [151.294220, -33.736329], [151.301454, -33.700754]]] # can also be loaded from a .kml polygon #kml_polygon = os.path.join(os.getcwd(), 'examples', 'NARRA_polygon.kml') #polygon = SDS_tools.polygon_from_kml(kml_polygon) # date range dates = ['2017-12-01', '2018-01-01'] # satellite missions sat_list = ['S2'] # name of the site sitename = 'NARRA' # filepath where data will be stored filepath_data = os.path.join(os.getcwd(), 'data') # put all the inputs into a dictionnary inputs = { 'polygon': polygon, 'dates': dates, 'sat_list': sat_list, 'sitename': sitename, 'filepath': filepath_data } #%% 2. Retrieve images # retrieve satellite images from GEE metadata = SDS_download.retrieve_images(inputs) # if you have already downloaded the images, just load the metadata file metadata = SDS_download.get_metadata(inputs) #%% 3. Batch shoreline detection # settings for the shoreline extraction settings = { # general parameters: 'cloud_thresh': 0.5, # threshold on maximum cloud cover 'output_epsg': 28356, # epsg code of spatial reference system desired for the output # quality control: 'check_detection': True, # if True, shows each shoreline detection to the user for validation 'save_figure': True, # if True, saves a figure showing the mapped shoreline for each image # add the inputs defined previously 'inputs': inputs, # [ONLY FOR ADVANCED USERS] shoreline detection parameters: 'min_beach_area': 4500, # minimum area (in metres^2) for an object to be labelled as a beach 'buffer_size': 150, # radius (in metres) of the buffer around sandy pixels considered in the shoreline detection 'min_length_sl': 200, # minimum length (in metres) of shoreline perimeter to be valid 'cloud_mask_issue': False, # switch this parameter to True if sand pixels are masked (in black) on many images 'sand_color': 'default', # 'default', 'dark' (for grey/black sand beaches) or 'bright' (for white sand beaches) } # [OPTIONAL] preprocess images (cloud masking, pansharpening/down-sampling) SDS_preprocess.save_jpg(metadata, settings) # [OPTIONAL] create a reference shoreline (helps to identify outliers and false detections) settings['reference_shoreline'] = SDS_preprocess.get_reference_sl(metadata, settings) # set the max distance (in meters) allowed from the reference shoreline for a detected shoreline to be valid settings['max_dist_ref'] = 100 # extract shorelines from all images (also saves output.pkl and shorelines.kml) output = SDS_shoreline.extract_shorelines(metadata, settings) # plot the mapped shorelines fig = plt.figure() plt.axis('equal') plt.xlabel('Eastings') plt.ylabel('Northings') plt.grid(linestyle=':', color='0.5') for i in range(len(output['shorelines'])): sl = output['shorelines'][i] date = output['dates'][i] plt.plot(sl[:,0], sl[:,1], '.', label=date.strftime('%d-%m-%Y')) plt.legend() mng = plt.get_current_fig_manager() mng.window.showMaximized() fig.set_size_inches([15.76, 8.52]) #%% 4. Shoreline analysis # if you have already mapped the shorelines, load the output.pkl file filepath = os.path.join(inputs['filepath'], sitename) with open(os.path.join(filepath, sitename + '_output' + '.pkl'), 'rb') as f: output = pickle.load(f) # now we have to define cross-shore transects over which to quantify the shoreline changes # each transect is defined by two points, its origin and a second point that defines its orientation # there are 3 options to create the transects: # - option 1: draw the shore-normal transects along the beach # - option 2: load the transect coordinates from a .kml file # - option 3: create the transects manually by providing the coordinates # option 1: draw origin of transect first and then a second point to define the orientation transects = SDS_transects.draw_transects(output, settings) # option 2: load the transects from a .geojson file #geojson_file = os.path.join(os.getcwd(), 'examples', 'NARRA_transects.geojson') #transects = SDS_tools.transects_from_geojson(geojson_file) # option 3: create the transects by manually providing the coordinates of two points #transects = dict([]) #transects['Transect 1'] = np.array([[342836, 6269215], [343315, 6269071]]) #transects['Transect 2'] = np.array([[342482, 6268466], [342958, 6268310]]) #transects['Transect 3'] = np.array([[342185, 6267650], [342685, 6267641]]) # intersect the transects with the 2D shorelines to obtain time-series of cross-shore distance settings['along_dist'] = 25 cross_distance = SDS_transects.compute_intersection(output, transects, settings) # plot the time-series from matplotlib import gridspec fig = plt.figure() gs = gridspec.GridSpec(len(cross_distance),1) gs.update(left=0.05, right=0.95, bottom=0.05, top=0.95, hspace=0.05) for i,key in enumerate(cross_distance.keys()): if np.all(np.isnan(cross_distance[key])): continue ax = fig.add_subplot(gs[i,0]) ax.grid(linestyle=':', color='0.5') ax.set_ylim([-50,50]) ax.plot(output['dates'], cross_distance[key]- np.nanmedian(cross_distance[key]), '-^', markersize=6) ax.set_ylabel('distance [m]', fontsize=12) ax.text(0.5,0.95,'Transect ' + key, bbox=dict(boxstyle="square", ec='k',fc='w'), ha='center', va='top', transform=ax.transAxes, fontsize=14) mng = plt.get_current_fig_manager() mng.window.showMaximized() fig.set_size_inches([15.76, 8.52])