You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

62 lines
2.0 KiB
Python

# -*- coding: utf-8 -*-
"""
Created on Thu Mar 1 11:30:31 2018
@author: z5030440
Contains all the utilities, convenience functions and small functions that do simple things
"""
import matplotlib.pyplot as plt
import numpy as np
import pdb
def ecdf(x):
"""convenience function for computing the empirical CDF"""
vals, counts = np.unique(x, return_counts=True)
ecdf = np.cumsum(counts).astype(np.float64)
ecdf /= ecdf[-1]
return vals, ecdf
def intensity_histogram(image):
"""plots histogram and cumulative distribution of the pixel intensities in an image"""
imSize = image.shape
if len(imSize) == 2:
im = image[:,:].reshape(imSize[0] * imSize[1])
im = im[~np.isnan(im)]
fig, (ax1, ax2) = plt.subplots(2,1, sharex=True, figsize = (8,6))
ax1.hist(im, bins=300)
ax1.set_title('Probability density function')
ax2.hist(im, bins=300, cumulative=True, histtype='step')
ax2.set_title('Cumulative distribution')
plt.show()
else:
for i in range(imSize[2]):
im = image[:,:,i].reshape(imSize[0] * imSize[1])
im = im[~np.isnan(im)]
fig, (ax1, ax2) = plt.subplots(2,1, sharex=True, figsize = (8,6))
ax1.hist(im, bins=300)
ax1.set_title('Probability density function')
ax2.hist(im, bins=300, cumulative=True, histtype='step')
ax2.set_title('Cumulative distribution')
plt.show()
def compare_images(im1, im2):
"""plots 2 images next to each other, sharing the axis"""
plt.figure()
ax1 = plt.subplot(121)
plt.imshow(im1, cmap='gray')
ax2 = plt.subplot(122, sharex=ax1, sharey=ax1)
plt.imshow(im2, cmap='gray')
plt.show()
def find_indices(lst, condition):
"imitation of MATLAB find function"
return [i for i, elem in enumerate(lst) if condition(elem)]
def reject_outliers(data, m=2):
"rejects outliers in a numpy array"
return data[abs(data - np.mean(data)) < m * np.std(data)]