You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

93 lines
3.2 KiB
Python

#==========================================================#
# Shoreline extraction from satellite images
#==========================================================#
# load modules
import os
import pickle
import warnings
warnings.filterwarnings("ignore")
import matplotlib.pyplot as plt
6 years ago
import SDS_download, SDS_preprocess, SDS_shoreline, SDS_tools
# region of interest (longitude, latitude), can also be loaded from a .kml polygon
6 years ago
polygon = SDS_tools.coords_from_kml('NARRA.kml')
#polygon = [[[151.301454, -33.700754],
# [151.311453, -33.702075],
# [151.307237, -33.739761],
# [151.294220, -33.736329],
# [151.301454, -33.700754]]]
# date range
dates = ['2017-12-01', '2018-01-01']
# satellite missions
6 years ago
sat_list = ['S2']
# name of the site
sitename = 'NARRA'
6 years ago
# put all the inputs into a dictionnary
inputs = {
'polygon': polygon,
'dates': dates,
'sat_list': sat_list,
'sitename': sitename
}
# retrieve satellite images from GEE
metadata = SDS_download.retrieve_images(inputs)
6 years ago
# if you have already downloaded the images, just load the metadata file
filepath = os.path.join(os.getcwd(), 'data', sitename)
with open(os.path.join(filepath, sitename + '_metadata' + '.pkl'), 'rb') as f:
6 years ago
metadata = pickle.load(f)
#%%
# settings for the shoreline extraction
settings = {
# general parameters:
'cloud_thresh': 0.2, # threshold on maximum cloud cover
'output_epsg': 28356, # epsg code of spatial reference system desired for the output
# [ONLY FOR ADVANCED USERS] shoreline detection parameters:
'min_beach_area': 4500, # minimum area (in metres^2) for an object to be labelled as a beach
'buffer_size': 150, # radius (in pixels) of disk for buffer around sandy pixels
'min_length_sl': 200, # minimum length of shoreline perimeter to be kept
# quality control:
6 years ago
'check_detection': True, # if True, shows each shoreline detection and lets the user
# decide which ones are correct and which ones are false due to
6 years ago
# the presence of clouds
# add the inputs
6 years ago
'inputs': inputs
}
6 years ago
# [OPTIONAL] preprocess images (cloud masking, pansharpening/down-sampling)
SDS_preprocess.save_jpg(metadata, settings)
# [OPTIONAL] create a reference shoreline (helps to identify outliers and false detections)
settings['reference_shoreline'] = SDS_preprocess.get_reference_sl_manual(metadata, settings)
# set the max distance (in meters) allowed from the reference shoreline for a detected shoreline to be valid
settings['max_dist_ref'] = 100
# extract shorelines from all images (also saves output.pkl and output.kml)
6 years ago
output = SDS_shoreline.extract_shorelines(metadata, settings)
#%%
# basic figure plotting the mapped shorelines
plt.figure()
plt.axis('equal')
plt.xlabel('Eastings [m]')
plt.ylabel('Northings [m]')
6 years ago
for satname in output.keys():
if satname == 'meta':
continue
6 years ago
for i in range(len(output[satname]['shoreline'])):
sl = output[satname]['shoreline'][i]
date = output[satname]['timestamp'][i]
plt.plot(sl[:, 0], sl[:, 1], '.', label=date.strftime('%d-%m-%Y'))
plt.legend()