|
|
|
# -*- coding: utf-8 -*-
|
|
|
|
"""
|
|
|
|
Created on Thu Mar 1 11:30:31 2018
|
|
|
|
|
|
|
|
@author: z5030440
|
|
|
|
|
|
|
|
Contains all the utilities, convenience functions and small functions that do simple things
|
|
|
|
"""
|
|
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
from datetime import datetime, timedelta
|
|
|
|
import numpy as np
|
|
|
|
import scipy.io as sio
|
|
|
|
import pdb
|
|
|
|
|
|
|
|
|
|
|
|
def ecdf(x):
|
|
|
|
"""convenience function for computing the empirical CDF"""
|
|
|
|
vals, counts = np.unique(x, return_counts=True)
|
|
|
|
ecdf = np.cumsum(counts).astype(np.float64)
|
|
|
|
ecdf /= ecdf[-1]
|
|
|
|
return vals, ecdf
|
|
|
|
|
|
|
|
def intensity_histogram(image):
|
|
|
|
"""plots histogram and cumulative distribution of the pixel intensities in an image"""
|
|
|
|
imSize = image.shape
|
|
|
|
if len(imSize) == 2:
|
|
|
|
im = image[:,:].reshape(imSize[0] * imSize[1])
|
|
|
|
im = im[~np.isnan(im)]
|
|
|
|
fig, (ax1, ax2) = plt.subplots(2,1, sharex=True, figsize = (8,6))
|
|
|
|
ax1.hist(im, bins=300)
|
|
|
|
ax1.set_title('Probability density function')
|
|
|
|
ax2.hist(im, bins=300, cumulative=True, histtype='step')
|
|
|
|
ax2.set_title('Cumulative distribution')
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
else:
|
|
|
|
for i in range(imSize[2]):
|
|
|
|
im = image[:,:,i].reshape(imSize[0] * imSize[1])
|
|
|
|
im = im[~np.isnan(im)]
|
|
|
|
fig, (ax1, ax2) = plt.subplots(2,1, sharex=True, figsize = (8,6))
|
|
|
|
ax1.hist(im, bins=300)
|
|
|
|
ax1.set_title('Probability density function')
|
|
|
|
ax2.hist(im, bins=300, cumulative=True, histtype='step')
|
|
|
|
ax2.set_title('Cumulative distribution')
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
def compare_images(im1, im2):
|
|
|
|
"""plots 2 images next to each other, sharing the axis"""
|
|
|
|
plt.figure()
|
|
|
|
ax1 = plt.subplot(121)
|
|
|
|
plt.imshow(im1, cmap='gray')
|
|
|
|
ax2 = plt.subplot(122, sharex=ax1, sharey=ax1)
|
|
|
|
plt.imshow(im2, cmap='gray')
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
def find_indices(lst, condition):
|
|
|
|
"imitation of MATLAB find function"
|
|
|
|
return [i for i, elem in enumerate(lst) if condition(elem)]
|
|
|
|
|
|
|
|
def reject_outliers(data, m=2):
|
|
|
|
"rejects outliers in a numpy array"
|
|
|
|
return data[abs(data - np.mean(data)) < m * np.std(data)]
|
|
|
|
|
|
|
|
def duplicates_dict(lst):
|
|
|
|
"return duplicates and indices"
|
|
|
|
# nested function
|
|
|
|
def duplicates(lst, item):
|
|
|
|
return [i for i, x in enumerate(lst) if x == item]
|
|
|
|
|
|
|
|
return dict((x, duplicates(lst, x)) for x in set(lst) if lst.count(x) > 1)
|
|
|
|
|
|
|
|
def datenum2datetime(datenum):
|
|
|
|
"convert datenum to datetime"
|
|
|
|
#takes in datenum and outputs python datetime
|
|
|
|
time = [datetime.fromordinal(int(dn)) + timedelta(days=float(dn)%1) - timedelta(days = 366) for dn in datenum]
|
|
|
|
return time
|
|
|
|
|
|
|
|
def loadmat(filename):
|
|
|
|
'''
|
|
|
|
this function should be called instead of direct spio.loadmat
|
|
|
|
as it cures the problem of not properly recovering python dictionaries
|
|
|
|
from mat files. It calls the function check keys to cure all entries
|
|
|
|
which are still mat-objects
|
|
|
|
'''
|
|
|
|
data = sio.loadmat(filename, struct_as_record=False, squeeze_me=True)
|
|
|
|
return _check_keys(data)
|
|
|
|
|
|
|
|
def _check_keys(dict):
|
|
|
|
'''
|
|
|
|
checks if entries in dictionary are mat-objects. If yes
|
|
|
|
todict is called to change them to nested dictionaries
|
|
|
|
'''
|
|
|
|
for key in dict:
|
|
|
|
if isinstance(dict[key], sio.matlab.mio5_params.mat_struct):
|
|
|
|
dict[key] = _todict(dict[key])
|
|
|
|
return dict
|
|
|
|
|
|
|
|
def _todict(matobj):
|
|
|
|
'''
|
|
|
|
A recursive function which constructs from matobjects nested dictionaries
|
|
|
|
'''
|
|
|
|
dict = {}
|
|
|
|
for strg in matobj._fieldnames:
|
|
|
|
elem = matobj.__dict__[strg]
|
|
|
|
if isinstance(elem, sio.matlab.mio5_params.mat_struct):
|
|
|
|
dict[strg] = _todict(elem)
|
|
|
|
else:
|
|
|
|
dict[strg] = elem
|
|
|
|
return dict
|