CoastSat is an open-source software toolkit written in Python that enables users to obtain time-series of shoreline position at any coastline worldwide from 30+ years (and growing) of publicly available satellite imagery.
*Vos K., Splinter K.D., Harley M.D., Simmons J.A., Turner I.L. (submitted). CoastSat: a Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery, Environmental Modelling and Software*.
Satellite remote sensing can provide low-cost long-term shoreline data capable of resolving the temporal scales of interest to coastal scientists and engineers at sites where no in-situ field measurements are available. Satellite imagery spanning the last 30 years with constant revisit periods is publicly available and suitable to extract repeated measurements of the shoreline position.
CoastSat enables the non-expert user to extract shorelines from Landsat 5, Landsat 7, Landsat 8 and Sentinel-2 images.
The shoreline detection algorithm implemented in CoastSat is optimised for sandy beach coastlines. It combines a sub-pixel border segmentation and an image classification component, which refines the segmentation into four distinct categories such that the shoreline detection is specific to the sand/water interface.
If you are not a regular Python user and are not sure how to install these packages from *conda-forge* and *PyPi*, the section below explains how to install them step-by-step using Anaconda. More experinced Python users can proceed to install these packages and go directly to section **1.2 Activating Google Earth Engine Python API**.
Now you need to populate the environment with the packages needed to run the CoastSat toolkit. All the necessary packages are contained in three platform specific files: `requirements_win64.txt`, `requirements_osx64.txt`, `requirements_linux64.txt`. To install the package for your pc platform, run one of the following commands, depending on which platform you are operating:
A web browser will open. Login with your GEE credentials, read and accept the terms and conditions, and copy the authorization code into the Anaconda terminal.
An example of how to run the software in a Jupyter Notebook is provided in the repository (`example_jupyter.ipynb`). To run this, first activate your `coastsat` environment with `conda activate coastsat` (if not already active), and then type:
The following sections guide the reader through the different functionalities of CoastSat with an example at Narrabeen-Collaroy beach (Australia). If you prefer to use Spyder or PyCharm or other integrated development environments (IDEs), a Python script `main.py` is also included in the repository. If using `main.py` on Spyder, make sure that the Graphics Backend is set to **Automatic** and not **Inline** (as this mode doesn't allow to interact with the figures). To change this setting go under Preferences>IPython console>Graphics.
To run a Jupyter Notebook, place your cursor inside one of the code sections and then clikc on the 'run' button up in the top menu to run that section and progress forward (as shown in the animation below).
To retrieve from the GEE server the avaiable satellite images cropped around the required region of coasltine for the particular time period of interest, the following user-defined variables are required:
The call `metadata = SDS_download.retrieve_images(inputs)` will launch the retrieval of the images and store them as .TIF files (under *.data\sitename*). The metadata contains the exact time of acquisition (UTC) and geometric accuracy of each downloaded image and is saved as `metadata_sitename.pkl`. If the images have already been downloaded previously and the user only wants to run the shoreline detection, the metadata can be loaded directly from this file. The screenshot below shows an example where all the images of Collaroy-Narrrabeen (Australia) acquired in December 2017 are retrieved.
-`cloud_thresh`: threshold on maximum cloud cover that is acceptable on the images (value between 0 and 1 - this may require some initial experimentation)
-`output_epsg`: epsg code defining the spatial reference system of the shoreline coordinates. It has to be a cartesion coordinate system (i.e. projected) and not a geographical coordinate system (in latitude and longitude angles).
-`check_detection`: if set to `True` allows the user to quality control each shoreline detection
See http://spatialreference.org/ to find the EPSG number corresponding to your local coordinate system. If the user wants to quality control the mapped shorelines and manually validate each detection, the parameter `check_detection` should be set to `True`.
In addition, there are extra parameters (`min_beach_size`, `buffer_size`, `min_length_sl`, `cloud_mask_issue`) that can be tuned to optimise the shoreline detection (for Advanced users only). For the moment leave these parameters set to their default values, we will see later how they can be modified.
When `check_detection` is set to `True`, a figure like the one below appears and asks the user to manually accept/reject each detection by clicking on `keep` or `skip`.
-`sitename_output.pkl`: contains a list with the shoreline coordinates and the exact timestamp at which the image was captured (UTC time) as well as the geometric accuracy and the cloud cover of each indivdual image. This list can be manipulated with Python, a snippet of code to plot the results is provided in the main script.
As mentioned above, there are some additional parameters that can be modified to optimise the shoreline detection:
-`min_beach_area`: minimum allowable object area (in metres^2) for the class 'sand'. During the image classification, some features (for example, building roofs) may be incorrectly labelled as sand. To correct this, all the objects classified as sand containing less than a certain number of connected pixels are removed from the sand class. The default value of `min_beach_area` is 4500 m^2, which corresponds to 20 connected pixels of 15 m^2. If you are looking at a very small beach (<20connectedpixelsontheimages),trydecreasingthevalueofthisparameter.
-`buffer_size`: radius (in metres) that defines the buffer around sandy pixels that is considered for the shoreline detection. The default value of `buffer_size` is 150 m. This parameter should be increased if you have a very wide (>150 m) surf zone or inter-tidal zone.
-`min_length_sl`: minimum length (in metres) of shoreline perimeter to be valid. This can be used to discard small features that are detected but do not correspond to the sand-water shoreline. The default value is 200 m. If the shoreline that you are trying to map is shorter than 200 m, decrease the value of this parameter.
-`cloud_mask_issue`: the cloud mask algorithm applied to Landsat images by USGS, namely CFMASK, does have difficulties sometimes with very bright features such as beaches or white-water in the ocean. This may result in pixels corresponding to a beach being identified as clouds in the cloud mask (appear as black pixels on your images). If this issue seems to be present in a large proportion of images from your local beach, you can switch this parameter to `True` and CoastSat will remove from the cloud mask the pixels that form very thin linear features (as often these are beaches and not clouds). Only activate this parameter if you observe this very specific cloud mask issue, otherwise leave to the default value of `False`.
There is also an option to manually digitize a reference shoreline before running the batch shoreline detection on all the images. This reference shoreline helps to reject outliers and false detections when mapping shorelines as it only considers as valid shorelines the points that are within a distance from this reference shoreline.
The user can manually digitize a reference shoreline on one of the images by calling:
The maximum distance (in metres) allowed from the reference shoreline is defined by the parameter `max_dist_ref`. This parameter is set to a default value of 100 m. If you think that your shoreline will move more than 100 m, please change this parameter to an appropriate distance. This may be the case for large nourishments or eroding/accreting coastlines.
This section shows how to obtain time-series of shoreline change along shore-normal transects. Each transect is defined by two points, its origin and a second point that defines its orientation. The parameter `transect_length` determines how far (in metres) from the origin the transect will span. There are 3 options to define the coordinates of the transects:
1. The user can interactively draw shore-normal transects along the beach:
**Note:** if you choose option 2 or 3, make sure that the points that you are providing are in the spatial reference system defined by `settings['output_epsg']`.
Once the shore-normal transects have been defined, the intersection between the 2D shorelines and the transects is computed with the following function:
The parameter `along_dist` defines the along-shore distance around the transect over which shoreline points are selected to compute the intersection. The default value is 25 m, which means that the intersection is computed as the median of the points located within 25 m of the transect (50 m alongshore-median).