You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

187 lines
5.7 KiB
Python

"""This module contains utilities to work with satellite images'
Author: Kilian Vos, Water Research Laboratory, University of New South Wales
"""
# Initial settings
import os
import numpy as np
from osgeo import gdal, ogr, osr
import skimage.transform as transform
import simplekml
import pdb
# Functions
def convert_pix2world(points, georef):
"""
Converts pixel coordinates (row,columns) to world projected coordinates
performing an affine transformation.
KV WRL 2018
Arguments:
-----------
points: np.array or list of np.array
array with 2 columns (rows first and columns second)
georef: np.array
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale]
Returns: -----------
points_converted: np.array or list of np.array
converted coordinates, first columns with X and second column with Y
"""
# make affine transformation matrix
aff_mat = np.array([[georef[1], georef[2], georef[0]],
[georef[4], georef[5], georef[3]],
[0, 0, 1]])
# create affine transformation
tform = transform.AffineTransform(aff_mat)
if type(points) is list:
points_converted = []
# iterate over the list
for i, arr in enumerate(points):
tmp = arr[:,[1,0]]
points_converted.append(tform(tmp))
elif type(points) is np.ndarray:
tmp = points[:,[1,0]]
points_converted = tform(tmp)
else:
print('invalid input type')
raise
return points_converted
def convert_world2pix(points, georef):
"""
Converts world projected coordinates (X,Y) to image coordinates (row,column)
performing an affine transformation.
KV WRL 2018
Arguments:
-----------
points: np.array or list of np.array
array with 2 columns (rows first and columns second)
georef: np.array
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale]
Returns: -----------
points_converted: np.array or list of np.array
converted coordinates, first columns with row and second column with column
"""
# make affine transformation matrix
aff_mat = np.array([[georef[1], georef[2], georef[0]],
[georef[4], georef[5], georef[3]],
[0, 0, 1]])
# create affine transformation
tform = transform.AffineTransform(aff_mat)
if type(points) is list:
points_converted = []
# iterate over the list
for i, arr in enumerate(points):
points_converted.append(tform.inverse(points))
elif type(points) is np.ndarray:
points_converted = tform.inverse(points)
else:
print('invalid input type')
raise
return points_converted
def convert_epsg(points, epsg_in, epsg_out):
"""
Converts from one spatial reference to another using the epsg codes.
KV WRL 2018
Arguments:
-----------
points: np.array or list of np.ndarray
array with 2 columns (rows first and columns second)
epsg_in: int
epsg code of the spatial reference in which the input is
epsg_out: int
epsg code of the spatial reference in which the output will be
Returns: -----------
points_converted: np.array or list of np.array
converted coordinates
"""
# define input and output spatial references
inSpatialRef = osr.SpatialReference()
inSpatialRef.ImportFromEPSG(epsg_in)
outSpatialRef = osr.SpatialReference()
outSpatialRef.ImportFromEPSG(epsg_out)
# create a coordinates transform
coordTransform = osr.CoordinateTransformation(inSpatialRef, outSpatialRef)
# transform points
if type(points) is list:
points_converted = []
# iterate over the list
for i, arr in enumerate(points):
points_converted.append(np.array(coordTransform.TransformPoints(arr)))
elif type(points) is np.ndarray:
points_converted = np.array(coordTransform.TransformPoints(points))
else:
print('invalid input type')
raise
return points_converted
def coords_from_kml(fn):
# read .kml file
with open(fn) as kmlFile:
doc = kmlFile.read()
# parse to find coordinates field
str1 = '<coordinates>'
str2 = '</coordinates>'
subdoc = doc[doc.find(str1)+len(str1):doc.find(str2)]
coordlist = subdoc.split('\n')
polygon = []
for i in range(1,len(coordlist)-1):
polygon.append([float(coordlist[i].split(',')[0]), float(coordlist[i].split(',')[1])])
return [polygon]
def save_kml(coords, epsg):
kml = simplekml.Kml()
coords_wgs84 = convert_epsg(coords, epsg, 4326)
kml.newlinestring(name='coords', coords=coords_wgs84)
kml.save('coords.kml')
def get_filenames(filename, filepath, satname):
if satname == 'L5':
fn = os.path.join(filepath, filename)
if satname == 'L7' or satname == 'L8':
idx = filename.find('.tif')
filename_ms = filename[:idx-3] + 'ms.tif'
fn = [os.path.join(filepath[0], filename),
os.path.join(filepath[1], filename_ms)]
if satname == 'S2':
idx = filename.find('.tif')
filename20 = filename[:idx-3] + '20m.tif'
filename60 = filename[:idx-3] + '60m.tif'
fn = [os.path.join(filepath[0], filename),
os.path.join(filepath[1], filename20),
os.path.join(filepath[2], filename60)]
return fn