Add extract_definitions() function

master
Dan Howe 6 years ago
parent d671f36336
commit e62c23b7f0

@ -242,6 +242,128 @@ def telemetered_bore_downloader(bore_ids, start_date, end_date, download_dir):
driver.quit()
def extract_definitions(input_dir, output_dir):
"""Extract variable and quality metadata from bore records.
Args:
input_dir: path to downloaded zip archives
output_dir: path to save csv files
"""
# Get telemetered site data
csv_name = os.path.join(
os.path.dirname(os.path.dirname(__file__)), 'data',
'telemetered-sites.csv')
master = pd.read_csv(csv_name, index_col=0)
# Find zip files
zip_names = [f for f in os.listdir(input_dir) if f.endswith('.zip')]
# Prepare output directory
os.makedirs(output_dir, exist_ok=True)
for zip_name in tqdm(zip_names):
# Skip duplicate downloads
if re.search(r'\([0-9]+\)', zip_name):
continue
# Rename '.part' file if zip was not correctly downloaded
if os.path.getsize(os.path.join(input_dir, zip_name)) == 0:
shutil.move(
os.path.join(input_dir, zip_name) + '.part',
os.path.join(input_dir, zip_name))
# Read csv file inside zip archive
df = pd.read_csv(
os.path.join(input_dir, zip_name),
header=2,
skiprows=[3],
parse_dates=['Date'],
compression='zip',
dayfirst=True,
nrows=100)
# Extract metadata from last column
keys = ['Sites:', 'Variables:', 'Qualities:']
meta = {k: [] for k in keys}
for i, row in df.iterrows():
line = row.values[-1]
if line in keys:
header = True
var = line
elif line == ' ':
continue
else:
meta[var].append(line)
# Get bore specifics
site_data = meta['Sites:'][0]
lat = float(re.search(r'(?<=Lat:)\S+', site_data).group())
lon = float(re.search(r'(?<=Long:)\S+', site_data).group())
elev = float(re.search(r'(?<=Elev:).+(?=m)', site_data).group())
address = re.search(r'(?<=\d\.\d\.\d - ).+(?=\sLat)',
site_data).group()
bore_id = re.search(r'^\S+', site_data).group()
site, hole, pipe = bore_id.split('.')
sites = pd.DataFrame()
sites['ID'] = [bore_id]
sites['Site'] = [site]
sites['Hole'] = [hole]
sites['Pipe'] = [pipe]
sites['Lat'] = [lat]
sites['Lon'] = [lon]
sites['Elev'] = [elev]
sites['Address'] = [address]
sites = sites.set_index('ID')
# Get basin from master site dataframe
sites['Basin name'] = master.loc[sites.index, 'Basin name']
sites['Basin code'] = master.loc[sites.index, 'Basin code']
# Save variable definitions
variables = pd.DataFrame(
[v.split(' - ', 1) for v in meta['Variables:']])
variables.columns = ['Code', 'Description']
variables['Code'] = variables['Code'].astype(int)
variables = variables.set_index('Code')
# Save quality definitions
qualities = pd.DataFrame(
[q.split(' - ', 1) for q in meta['Qualities:']])
qualities.columns = ['Code', 'Description']
qualities['Code'] = qualities['Code'].astype(int)
qualities = qualities.set_index('Code')
# Update existing values
csv_name_s = os.path.join(output_dir, 'sites.csv')
csv_name_v = os.path.join(output_dir, 'variables.csv')
csv_name_q = os.path.join(output_dir, 'qualities.csv')
try:
sites = sites.append(pd.read_csv(csv_name_s, index_col=0))
sites = sites.drop_duplicates().sort_index()
except FileNotFoundError:
pass
try:
variables = variables.append(pd.read_csv(csv_name_v, index_col=0))
variables = variables.drop_duplicates().sort_index()
except FileNotFoundError:
pass
try:
variables = variables.append(pd.read_csv(csv_name_q, index_col=0))
qualities = qualities.drop_duplicates().sort_index()
except FileNotFoundError:
pass
# Export updated tables
sites.to_csv(csv_name_s)
variables.to_csv(csv_name_v)
qualities.to_csv(csv_name_q)
def extract_records(input_dir, output_dir, clean_up=False):
"""Extract downloaded bore records.
@ -274,6 +396,23 @@ def extract_records(input_dir, output_dir, clean_up=False):
os.path.join(input_dir, zip_name) + '.part',
os.path.join(input_dir, zip_name))
# Read header
header = pd.read_csv(
os.path.join(input_dir, zip_name), compression='zip', nrows=3)
# Remove comments
header = header.iloc[:, 1:-1].T
# Apply product codes to all columns
header.iloc[1::2, 0] = header.iloc[::2, 0].values
header[0] = header[0].astype(float).astype(int).astype(str)
# Move quality label
header.iloc[1::2, 1] = header.iloc[1::2, 2]
# Combine labels
columns = [' '.join(c) for c in header.iloc[:, :-1].values]
# Read csv file inside zip archive
df = pd.read_csv(
os.path.join(input_dir, zip_name),
@ -283,32 +422,14 @@ def extract_records(input_dir, output_dir, clean_up=False):
compression='zip',
dayfirst=True)
# Update column names
df.columns = ['Date time'] + columns + ['Metadata']
# Get bore specifics
meta = df.iloc[1, -1]
lat = float(re.search(r'(?<=Lat:)\S+', meta).group())
lon = float(re.search(r'(?<=Long:)\S+', meta).group())
elev = float(re.search(r'(?<=Elev:).+(?=m)', meta).group())
address = re.search(r'(?<=\d\.\d\.\d - ).+(?=\sLat)', meta).group()
meta = df['Metadata'].iloc[1]
bore_id = re.search(r'^\S+', meta).group()
site, hole, pipe = bore_id.split('.')
# FIXME: detect basin automatically
basin_id = 'MB'
# Rename columns
df = df.rename(
columns={
'Date': 'Date time',
'Bore level below MP': 'Below Measuring Point',
'GW Level - m AHD': 'Above Sea Level'
})
# Select output columns
df = df[[
'Date time',
'Below Measuring Point',
'Above Sea Level',
]]
df.drop(columns='Metadata')
# Set date index for resampling
df.index = df['Date time']
@ -325,15 +446,6 @@ def extract_records(input_dir, output_dir, clean_up=False):
df = df.resample('1w').mean()
df['Date time'] = df.index
# Add bore specifics to dataframe
df['Site'] = site
df['Hole'] = hole
df['Pipe'] = pipe
df['Lat'] = lat
df['Lon'] = lon
df['Elev'] = elev
df['Basin'] = basin_id
master[period] = pd.concat([master[period], df])
if clean_up:
@ -341,12 +453,6 @@ def extract_records(input_dir, output_dir, clean_up=False):
os.remove(os.path.join(input_dir, zip_name))
for period in periods:
# Set column order
master[period] = master[period][[
'Date time', 'Basin', 'Site', 'Hole', 'Pipe',
'Below Measuring Point', 'Above Sea Level', 'Lat', 'Lon', 'Elev'
]]
# Get latest date from dataframe
latest_date = master[period]['Date time'].iloc[-1].strftime('%Y-%m-%d')
csv_name = os.path.join(

Loading…
Cancel
Save