Request point data from SILO: https://silo.longpaddock.qld.gov.au/
You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
Dan Howe 1451750377 Update readme 7 years ago
doc Add usage examples to readme 7 years ago
silo Convert package to module 7 years ago
README.md Update readme 7 years ago
setup.py Convert package to module 7 years ago

README.md

silo

Scientific Information for Land Owners (SILO) is a database of Australian climate data from 1889 (current to yesterday). It provides daily datasets for a range of climate variables in ready-to-use formats suitable for research and climate applications. SILO products provide national coverage with interpolated infills for missing data, which allows you to focus on your research or model development without the burden of data preparation.

https://silo.longpaddock.qld.gov.au

There are two different data types:

Point data:

Get multiple climate variables at a single point (accessible with this python module).

Gridded data:

Get a single climate variable for the entire Australian continent (accessible on the SILO website).

Point data

Installation

git clone http://git.wrl.unsw.edu.au:3000/danh/silo.git
pip install -e silo

Usage

import silo

variables = ['daily_rain', 'max_temp', 'min_temp']
api_key = 'BcfJnotlnVgX9gyLmZh2dURqNH8xAD3m8Am7V9OY'
start = '18990101'
finish = '20180101'
lat = -33
lon = 151

silo.pointdata(variables, api_key, start, finish, lat=lat, lon=lon,
               output='silo-data.csv')

silo-data.csv

date latitude longitude daily_rain_mm daily_rain_source max_temp_Celsius max_temp_source min_temp_Celsius min_temp_source
1899-01-01 -33 151 0.9 24 31.4 35 14.8 35
1899-01-02 -33 151 0 24 30.1 35 18.3 35
1899-01-03 -33 151 0 24 33.3 35 14.3 35
...

Gridded data

Gridded datasets are available here:

https://silo.longpaddock.qld.gov.au/gridded-data

Example: generate timeseries at specific location

import xarray as xr
import pandas as pd
import calendar
import matplotlib.pyplot as plt

# Open netcdf dataset
fname = '2000.monthly_rain.nc'
ds = xr.open_dataset(fname)

# Convert to pandas dataframe
df = ds.to_dataframe().drop(columns=['crs'])

# Set coordinates
lat = -33.75
lon = 151.25

# Create temporary dataframe at specific location
df1 = df.loc[lat, lon]

# Plot time series
fig, ax = plt.subplots(1, 1, figsize=(6, 4))
ax.plot(df1.index, df1.values)

# Tidy up figure
ax.set_xticks(df1.index)
ax.set_xticklabels([calendar.month_abbr[i] for i in df1.index.month])
ax.set_ylabel('Rainfall (mm)', labelpad=10)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)

plt.show()

Example: generate maps at specific dates

import xarray as xr
import pandas as pd
import calendar
import matplotlib.pyplot as plt

# Open netcdf dataset
fname = '2000.monthly_rain.nc'
ds = xr.open_dataset(fname)

# Convert to pandas dataframe
df = ds.to_dataframe().drop(columns=['crs'])

# Get index values
lats = df.index.get_level_values('lat').unique()
lons = df.index.get_level_values('lon').unique()
dates = df.index.get_level_values('time').unique()

fig, ax = plt.subplots(3, 4)

for i, date in enumerate(dates):
    # Get temporary dataframe with only one date
    df1 = df[df.index.get_level_values('time') == date]

    # Remove date from multi-index
    df1.index = df1.index.droplevel(-1)

    # Split multi-index so that rows=latitude and columns=longitude
    grid = df1.unstack()

    # Plot colour map for current month
    a = ax.ravel()[i]
    im = a.imshow(grid, cmap='Blues', vmin=-100, vmax=800)
    a.set_title(calendar.month_abbr[i + 1])
    a.invert_yaxis()
    a.axis('off')

# Add colour bar
cbax = fig.add_axes([0.95, 0.3, 0.02, 0.4])
cb = fig.colorbar(im, cax=cbax)
cb.set_ticks([0, 200, 400, 600, 800])
cbax.set_ylabel('Monthly rainfall (mm)', labelpad=10)

plt.show()

Available climate variables

code name units
daily_rain Daily rainfall mm
monthly_rain Monthly rainfall mm
max_temp Maximum temperature Celsius
min_temp Minimum temperature Celsius
vp Vapour pressure hPa
vp_deficit Vapour pressure deficit hPa
evap_pan Evaporation - Class A pan mm
evap_syn Evaporation - synthetic estimate mm
evap_comb Evaporation - combination (synthetic estimate pre-1970, class A pan 1970 onwards) mm
evap_morton_lake Evaporation - Morton's shallow lake evaporation mm
radiation Solar radiation - total incoming downward shortwave radiation on a horizontal surface MJm-2
rh_tmax Relative humidity at the time of maximum temperature %
rh_tmin Relative humidity at the time of minimum temperature %
et_short_crop Evapotranspiration - FAO56 short crop mm
et_tall_crop Evapotranspiration - ASCE tall crop mm
et_morton_actual Evapotranspiration - Morton's areal actual evapotranspiration mm
et_morton_potential Evapotranspiration - Morton's potential evapotranspiration mm
et_morton_wet Evapotranspiration - Morton's wet-environment areal evapotranspiration over land mm
mslp Mean sea level pressure hPa