Convert quantities between model and prototype scale using Froude and Reynoolds similitude.
Go to file
Dan Howe e3fc52fd3e Fix test name
doc Crop image
scaling Add ReynoldsConverter to base module
tests Fix test name
README.md Update readme
setup.py Prepare 0.2.0 release

README.md

scaling

Convert quantities between model and prototype scale using Froude and Reynolds similitude.

Installation

pip install git+http://git.wrl.unsw.edu.au:3000/danh/scaling.git

Usage

>>> from scaling import FroudeConverter
>>> froude = FroudeConverter()

>>> # Convert model value of 200 mm to prototype value (m) with scale of 10
>>> froude.model_to_proto(200, length_scale=10, input_unit='mm', target_unit='m')
2.0

>>> # Get Froude scaling exponent for quantities of time
>>> froude.scaling_exponent('s')
0.5

>>> # Get length, mass and time dimensions for quantities of energy
>>> froude.dimensions('kJ')
'L^2 M^1 T^-2'

Dataframes are also accepted, and specific units can be specified for the values in the index.

>>> T = 2
>>> H = 100

>>> # Generate regular waves with height=100mm, and period=2s
>>> t = np.arange(0, 10.1, 0.1)
>>> eta = 0.5 * H * np.sin(t * 2 * np.pi / T)

>>> df_model = pd.DataFrame(index=t, data=eta)
>>> df_model.columns = ['$\eta$ (mm)']
>>> df_model.index.name = 'Time (s)'

>>> df_model.plot()

>>> # Convert to prototype dimensions, with length scale=25
>>> df_proto = froude.model_to_proto(
        df_model,
        length_scale=25,
        input_unit='mm',
        target_unit='m',
        index_input_unit='s',
        index_target_unit='s')

>>> df_proto.columns = ['$\eta$ (m)']
>>> df_proto.plot()

scaling uses pint for unit and dimension conversions. pint is able to interpret a wide range of different input units.

>>> # Convert water head model value (mm) to prototype pressure value (kPa)
>>> froude.model_to_proto(10, length_scale=100, 'mm.H20', 'kPa')
9.80665

>>> # Demonstrate different ways of specifying units of newtons
>>> froude.dimensions('N')
'L^1 M^1 T^-2'
>>> froude.dimensions('newton')
'L^1 M^1 T^-2'
>>> froude.dimensions('kg.m/s/s')
'L^1 M^1 T^-2'
>>> froude.dimensions('kilogram.metre/second^2')
'L^1 M^1 T^-2'

Froude scaling reference

Quantity Dimensions Scaling exponent
Length L^1 λ^1
Mass M^1 λ^3
Time T^1 λ^0.5
Velocity L^1 T^-1 λ^0.5
Acceleration L^1 T^-2 λ^0
Force L^1 M^1 T^-2 λ^3
Pressure L^-1 M^1 T^-2 λ^1
Overtopping L^2 T^-1 λ^1.5

Reynolds scaling reference

Quantity Dimensions Scaling exponent
Length L^1 λ^1
Mass M^1 λ^3
Time T^1 λ^2
Velocity L^1 T^-1 λ^-1
Acceleration L^1 T^-2 λ^-3
Force L^1 M^1 T^-2 λ^0
Pressure L^-1 M^1 T^-2 λ^-2
Overtopping L^2 T^-1 λ^0