Create DimensionConverter() class for more flexible scaling definitions
parent
3d82dc13d5
commit
f3d7b6191a
@ -1,146 +0,0 @@
|
||||
import pint
|
||||
|
||||
# Initialise unit definitions
|
||||
UREG = pint.UnitRegistry()
|
||||
|
||||
# Define Froude scaling relationships
|
||||
LENGTH_EXPONENT = 1
|
||||
TIME_EXPONENT = 1 / 2
|
||||
MASS_EXPONENT = 3
|
||||
|
||||
|
||||
def _convert(x, length_scale_factor, input_unit, target_unit):
|
||||
|
||||
# Calculate unit conversion factor
|
||||
input_unit = UREG(input_unit)
|
||||
target_unit = UREG(target_unit)
|
||||
unit_conversion_factor = input_unit.to(target_unit).magnitude
|
||||
|
||||
# Calculate Froude scaling factor
|
||||
froude_scale_factor = length_scale_factor**(
|
||||
input_unit.dimensionality['[length]'] * LENGTH_EXPONENT +
|
||||
input_unit.dimensionality['[time]'] * TIME_EXPONENT +
|
||||
input_unit.dimensionality['[mass]'] * MASS_EXPONENT)
|
||||
|
||||
# Scale values
|
||||
x_scaled = x * froude_scale_factor
|
||||
|
||||
# Convert to output units
|
||||
x_scaled *= unit_conversion_factor
|
||||
|
||||
return x_scaled
|
||||
|
||||
|
||||
def proto_to_model(x_proto,
|
||||
length_scale,
|
||||
input_unit,
|
||||
target_unit,
|
||||
index_input_unit=None,
|
||||
index_target_unit=None):
|
||||
"""Convert prototype value(s) to model value(s) in specified units.
|
||||
|
||||
Args:
|
||||
x_proto: prototype values (array_like, or pandas dataframe)
|
||||
length_scale: ratio between proto and model dimensions (float)
|
||||
input_unit: unit of input (string)
|
||||
target_unit: unit of output (string)
|
||||
index_input_unit: unit of input index (dataframe only)
|
||||
index_target_unit: unit of output index (dataframe only)
|
||||
|
||||
Returns:
|
||||
input values in model scale
|
||||
"""
|
||||
|
||||
length_scale_factor = 1 / length_scale
|
||||
|
||||
# Convert values
|
||||
x_model = _convert(x_proto, length_scale_factor, input_unit, target_unit)
|
||||
|
||||
# Convert index (dataframe or series only)
|
||||
if (index_input_unit is not None) and (index_target_unit is not None):
|
||||
if type(x_model).__name__ in ['DataFrame', 'Series']:
|
||||
x_model.index = _convert(x_model.index, length_scale_factor,
|
||||
index_input_unit, index_target_unit)
|
||||
else:
|
||||
raise ValueError("'index_input_unit' and 'index_target_unit' "
|
||||
"can only be used when input is dataframe")
|
||||
|
||||
return x_model
|
||||
|
||||
|
||||
def model_to_proto(x_model,
|
||||
length_scale,
|
||||
input_unit,
|
||||
target_unit,
|
||||
index_input_unit=None,
|
||||
index_target_unit=None):
|
||||
"""Convert model value(s) to prototype value(s) in specified units.
|
||||
|
||||
Args:
|
||||
x_model: model values (array_like, or pandas dataframe)
|
||||
length_scale: ratio between proto and model dimensions (float)
|
||||
input_unit: unit of input (string)
|
||||
target_unit: unit of output (string)
|
||||
index_input_unit: unit of input index (dataframe only)
|
||||
index_target_unit: unit of output index (dataframe only)
|
||||
|
||||
Returns:
|
||||
input values in prototype scale
|
||||
"""
|
||||
|
||||
length_scale_factor = length_scale
|
||||
|
||||
# Convert values
|
||||
x_proto = _convert(x_model, length_scale_factor, input_unit, target_unit)
|
||||
|
||||
# Convert index (dataframe or series only)
|
||||
if (index_input_unit is not None) and (index_target_unit is not None):
|
||||
if type(x_proto).__name__ in ['DataFrame', 'Series']:
|
||||
x_proto.index = _convert(x_proto.index, length_scale_factor,
|
||||
index_input_unit, index_target_unit)
|
||||
else:
|
||||
raise ValueError("'index_input_unit' and 'index_target_unit' "
|
||||
"can only be used when input is dataframe")
|
||||
|
||||
return x_proto
|
||||
|
||||
|
||||
def dimensions(unit):
|
||||
"""Get unit dimensions.
|
||||
|
||||
Args:
|
||||
unit: unit name or symbol (string)
|
||||
|
||||
Returns:
|
||||
string containing unit dimensions
|
||||
"""
|
||||
|
||||
# Get dimensions of unit
|
||||
dims = UREG(unit).dimensionality
|
||||
|
||||
dim_data = {'L': '[length]', 'M': '[mass]', 'T': '[time]'}
|
||||
|
||||
s = ''
|
||||
for symbol, key in dim_data.items():
|
||||
exponent = dims[key]
|
||||
if exponent != 0:
|
||||
s += '{}^{:g} '.format(symbol, exponent)
|
||||
|
||||
return s.strip()
|
||||
|
||||
|
||||
def scaling_exponent(unit):
|
||||
"""Convert prototype value(s) to model value(s) in specified units.
|
||||
|
||||
Args:
|
||||
unit: unit of quantity to be scaled (string)
|
||||
|
||||
Returns:
|
||||
scaling factor
|
||||
"""
|
||||
# Calculate Froude scaling factor
|
||||
scaling_exponent = (UREG(unit).dimensionality['[length]'] * LENGTH_EXPONENT
|
||||
+ UREG(unit).dimensionality['[time]'] * TIME_EXPONENT +
|
||||
UREG(unit).dimensionality['[mass]'] * MASS_EXPONENT)
|
||||
|
||||
return scaling_exponent
|
@ -0,0 +1,159 @@
|
||||
import pint
|
||||
|
||||
# Initialise unit definitions
|
||||
UREG = pint.UnitRegistry()
|
||||
|
||||
|
||||
class DimensionConverter():
|
||||
def _convert(self, x, length_scale_factor, input_unit, target_unit):
|
||||
|
||||
# Calculate unit conversion factor
|
||||
input_unit = UREG(input_unit)
|
||||
target_unit = UREG(target_unit)
|
||||
unit_conversion_factor = input_unit.to(target_unit).magnitude
|
||||
|
||||
# Calculate Froude scaling factor
|
||||
froude_scale_factor = length_scale_factor**(
|
||||
input_unit.dimensionality['[length]'] * self.LENGTH_EXPONENT +
|
||||
input_unit.dimensionality['[time]'] * self.TIME_EXPONENT +
|
||||
input_unit.dimensionality['[mass]'] * self.MASS_EXPONENT)
|
||||
|
||||
# Scale values
|
||||
x_scaled = x * froude_scale_factor
|
||||
|
||||
# Convert to output units
|
||||
x_scaled *= unit_conversion_factor
|
||||
|
||||
return x_scaled
|
||||
|
||||
def proto_to_model(self,
|
||||
x_proto,
|
||||
length_scale,
|
||||
input_unit,
|
||||
target_unit,
|
||||
index_input_unit=None,
|
||||
index_target_unit=None):
|
||||
"""Convert prototype value(s) to model value(s) in specified units.
|
||||
|
||||
Args:
|
||||
x_proto: prototype values (array_like, or pandas dataframe)
|
||||
length_scale: ratio between proto and model dimensions (float)
|
||||
input_unit: unit of input (string)
|
||||
target_unit: unit of output (string)
|
||||
index_input_unit: unit of input index (dataframe only)
|
||||
index_target_unit: unit of output index (dataframe only)
|
||||
|
||||
Returns:
|
||||
input values in model scale
|
||||
"""
|
||||
|
||||
length_scale_factor = 1 / length_scale
|
||||
|
||||
# Convert values
|
||||
x_model = self._convert(x_proto, length_scale_factor, input_unit,
|
||||
target_unit)
|
||||
|
||||
# Convert index (dataframe or series only)
|
||||
if (index_input_unit is not None) and (index_target_unit is not None):
|
||||
if type(x_model).__name__ in ['DataFrame', 'Series']:
|
||||
x_model.index = self._convert(x_model.index, length_scale_factor,
|
||||
index_input_unit, index_target_unit)
|
||||
else:
|
||||
raise ValueError("'index_input_unit' and 'index_target_unit' "
|
||||
"can only be used when input is dataframe")
|
||||
|
||||
return x_model
|
||||
|
||||
def model_to_proto(self,
|
||||
x_model,
|
||||
length_scale,
|
||||
input_unit,
|
||||
target_unit,
|
||||
index_input_unit=None,
|
||||
index_target_unit=None):
|
||||
"""Convert model value(s) to prototype value(s) in specified units.
|
||||
|
||||
Args:
|
||||
x_model: model values (array_like, or pandas dataframe)
|
||||
length_scale: ratio between proto and model dimensions (float)
|
||||
input_unit: unit of input (string)
|
||||
target_unit: unit of output (string)
|
||||
index_input_unit: unit of input index (dataframe only)
|
||||
index_target_unit: unit of output index (dataframe only)
|
||||
|
||||
Returns:
|
||||
input values in prototype scale
|
||||
"""
|
||||
|
||||
length_scale_factor = length_scale
|
||||
|
||||
# Convert values
|
||||
x_proto = self._convert(x_model, length_scale_factor, input_unit,
|
||||
target_unit)
|
||||
|
||||
# Convert index (dataframe or series only)
|
||||
if (index_input_unit is not None) and (index_target_unit is not None):
|
||||
if type(x_proto).__name__ in ['DataFrame', 'Series']:
|
||||
x_proto.index = self._convert(x_proto.index, length_scale_factor,
|
||||
index_input_unit, index_target_unit)
|
||||
else:
|
||||
raise ValueError("'index_input_unit' and 'index_target_unit' "
|
||||
"can only be used when input is dataframe")
|
||||
|
||||
return x_proto
|
||||
|
||||
def dimensions(self, unit):
|
||||
"""Get unit dimensions.
|
||||
|
||||
Args:
|
||||
unit: unit name or symbol (string)
|
||||
|
||||
Returns:
|
||||
string containing unit dimensions
|
||||
"""
|
||||
|
||||
# Get dimensions of unit
|
||||
dims = UREG(unit).dimensionality
|
||||
|
||||
dim_data = {'L': '[length]', 'M': '[mass]', 'T': '[time]'}
|
||||
|
||||
s = ''
|
||||
for symbol, key in dim_data.items():
|
||||
exponent = dims[key]
|
||||
if exponent != 0:
|
||||
s += '{}^{:g} '.format(symbol, exponent)
|
||||
|
||||
return s.strip()
|
||||
|
||||
def scaling_exponent(self, unit):
|
||||
"""Convert prototype value(s) to model value(s) in specified units.
|
||||
|
||||
Args:
|
||||
unit: unit of quantity to be scaled (string)
|
||||
|
||||
Returns:
|
||||
scaling factor
|
||||
"""
|
||||
# Calculate Froude scaling factor
|
||||
scaling_exponent = (
|
||||
UREG(unit).dimensionality['[length]'] * self.LENGTH_EXPONENT +
|
||||
UREG(unit).dimensionality['[time]'] * self.TIME_EXPONENT +
|
||||
UREG(unit).dimensionality['[mass]'] * self.MASS_EXPONENT)
|
||||
|
||||
return scaling_exponent
|
||||
|
||||
|
||||
class Froude(DimensionConverter):
|
||||
def __init__(self):
|
||||
# Define Froude scaling relationships
|
||||
self.LENGTH_EXPONENT = 1
|
||||
self.TIME_EXPONENT = 1 / 2
|
||||
self.MASS_EXPONENT = 3
|
||||
|
||||
|
||||
class Reynolds(DimensionConverter):
|
||||
def __init__(self):
|
||||
# Define Reynolds scaling relationships
|
||||
self.LENGTH_EXPONENT = 1
|
||||
self.TIME_EXPONENT = 2
|
||||
self.MASS_EXPONENT = 3
|
Loading…
Reference in New Issue