diff --git a/scaling/froude.py b/scaling/froude.py index 670df45..27caba0 100644 --- a/scaling/froude.py +++ b/scaling/froude.py @@ -28,23 +28,24 @@ def _convert(x, length_scale_factor, input_unit, target_unit): # Convert to output units x_scaled *= unit_conversion_factor - # Scale time (dataframe or series only) - try: - x_scaled.index *= length_scale_factor**TIME_EXPONENT - except (AttributeError, TypeError): - pass - return x_scaled -def proto_to_model(x_proto, length_scale, input_unit, target_unit): +def proto_to_model(x_proto, + length_scale, + input_unit, + target_unit, + index_input_unit=None, + index_target_unit=None): """Convert prototype value(s) to model value(s) in specified units. Args: - x_proto: prototype values (array_like, or pandas dataframe) - length_scale: ratio between prototype and model dimensions (float) - input_unit: unit of input (string) - target_unit: unit of output (string) + x_proto: prototype values (array_like, or pandas dataframe) + length_scale: ratio between proto and model dimensions (float) + input_unit: unit of input (string) + target_unit: unit of output (string) + index_input_unit: unit of input index (dataframe only) + index_target_unit: unit of output index (dataframe only) Returns: input values in model scale @@ -52,17 +53,36 @@ def proto_to_model(x_proto, length_scale, input_unit, target_unit): length_scale_factor = 1 / length_scale - return _convert(x_proto, length_scale_factor, input_unit, target_unit) + # Convert values + x_model = _convert(x_proto, length_scale_factor, input_unit, target_unit) + + # Convert index (dataframe or series only) + if (index_input_unit is not None) and (index_target_unit is not None): + if type(x_model).__name__ in ['DataFrame', 'Series']: + x_model.index = _convert(x_model.index, length_scale_factor, + index_input_unit, index_target_unit) + else: + raise ValueError("'index_input_unit' and 'index_target_unit' " + "can only be used when input is dataframe") + + return x_model -def model_to_proto(x_model, length_scale, input_unit, target_unit): +def model_to_proto(x_model, + length_scale, + input_unit, + target_unit, + index_input_unit=None, + index_target_unit=None): """Convert model value(s) to prototype value(s) in specified units. Args: - x_model: model values (array_like, or pandas dataframe) - length_scale: ratio between prototype and model dimensions (float) - input_unit: unit of input (string) - target_unit: unit of output (string) + x_model: model values (array_like, or pandas dataframe) + length_scale: ratio between proto and model dimensions (float) + input_unit: unit of input (string) + target_unit: unit of output (string) + index_input_unit: unit of input index (dataframe only) + index_target_unit: unit of output index (dataframe only) Returns: input values in prototype scale @@ -70,7 +90,19 @@ def model_to_proto(x_model, length_scale, input_unit, target_unit): length_scale_factor = length_scale - return _convert(x_model, length_scale_factor, input_unit, target_unit) + # Convert values + x_proto = _convert(x_model, length_scale_factor, input_unit, target_unit) + + # Convert index (dataframe or series only) + if (index_input_unit is not None) and (index_target_unit is not None): + if type(x_proto).__name__ in ['DataFrame', 'Series']: + x_proto.index = _convert(x_proto.index, length_scale_factor, + index_input_unit, index_target_unit) + else: + raise ValueError("'index_input_unit' and 'index_target_unit' " + "can only be used when input is dataframe") + + return x_proto def dimensions(unit):