You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
roches-probabilistic-hazard.../slr/get_slr_distributions.py

120 lines
3.1 KiB
Python

"""Calculate probability distributions for IPCC sea level rise forecasts.
This will calculate the values required to Cauchy Distributions for
different SLR projections.
Reads:
'IPCC AR6.xlsx'
Writes:
'cauchy-values.csv'
D. Howe
d.howe@wrl.unsw.edu.au
2022-05-12
"""
import os
import re
import numpy as np
import pandas as pd
from scipy import stats, optimize
import matplotlib.pyplot as plt
PLOT = True
def cauchy_cdf(x, loc, scale):
"""Calculate cumulative density function, using Cauchy distribution."""
return stats.cauchy(loc=loc, scale=scale).cdf(x)
# Read data
df = pd.read_excel('IPCC AR6.xlsx', index_col=[0, 1, 2, 3, 4])
df = df.sort_index()
# Use all 'medium' confidence scenarios for intermediate quantiles
scenarios = ['ssp119', 'ssp126', 'ssp245', 'ssp370', 'ssp585']
dff = df.loc[838, 'total', 'medium', scenarios].groupby('quantile').mean()
# Use ssp119/ssp585 for 5th and 95th quantiles
dff.loc[5] = df.loc[838, 'total', 'medium', 'ssp119', 5]
dff.loc[95] = df.loc[838, 'total', 'medium', 'ssp585', 95]
dff = dff.T
dff.index.name = 'year'
percentiles = dff.columns.values / 100
for i, row in dff.iterrows():
values = row.values
x_min = values.min() - 0.2
x_max = values.max() + 0.2
x = np.linspace(x_min, x_max, num=1000)
# Fit distribution
loc, scale = optimize.curve_fit(cauchy_cdf, values, percentiles)[0]
p = {'loc': loc, 'scale': scale}
dff.loc[i, 'loc'] = loc
dff.loc[i, 'scale'] = scale
if not PLOT:
continue
fig, ax = plt.subplots(1, 2, figsize=(10, 3))
ax[0].plot(x, 100 * stats.cauchy.cdf(x, **p))
ax[0].plot(values, 100 * percentiles, '.', c='#444444')
ax[1].plot(x, stats.cauchy.pdf(x, **p), label='Cauchy')
ax[1].plot([], [], '.', c='#444444', label='IPCC data')
ax[1].legend()
ax[0].set_ylabel('Percentile', labelpad=10)
ax[0].set_title('Cumulative distribution')
ax[1].set_title('Probability density')
ax[0].annotate(i, (-0.3, 1),
xycoords='axes fraction',
clip_on=False,
size=14)
for a in ax:
a.set_xlabel('SLR (m)', labelpad=10)
a.spines['top'].set_visible(False)
a.spines['right'].set_visible(False)
plt.show()
# Save distribution parameters
dff[['loc', 'scale']].to_csv('cauchy-values.csv', float_format='%0.3f')
if PLOT:
# Plot all distributions
fig, ax = plt.subplots(1, 1, figsize=(8, 4))
cmap = plt.cm.get_cmap('RdBu_r', len(dff))
c = list(cmap(range(cmap.N)))
j = -1
for i, row in dff.iterrows():
j += 1
y = stats.cauchy(loc=row['loc'], scale=row['scale']).pdf(x)
ax.plot(x, y * row['scale'], c=c[j])
if j % 2 == 0:
ax.annotate(f' {i}', (x[y.argmax()], 0.32),
ha='center',
va='bottom',
clip_on=False,
rotation=90)
ax.set_ylim(top=0.35)
ax.set_yticks([])
ax.set_xlabel('SLR (m)', labelpad=10)
ax.set_ylabel('Normalised probability density (-)', labelpad=10)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
plt.show()