import os import re import numpy as np import pandas as pd from scipy import stats, optimize WORKBOOK = '../inputs/20220505_Probabilistic_Erosion_Parameters_5th_JTC_REVIEWED_IPCC_SLR_OFFSET.xlsx' # noqa SHEET = 'IPCC AR6 WRL FINAL' VERSION = 'WRL V5 corrected to 2020' # First row of data def get_cdf(x, loc, scale): """Calculate cumulative density function, using Cauchy distribution.""" return stats.cauchy(loc=loc, scale=scale).cdf(x) def cauchy(n_runs, start_year, end_year): """ Use Monte Carlo simulation to generate sea level rise trajectories by fitting IPCC data to a Cauchy distribution. Args: n_runs (int): number of runs start_year (int): first year of model end_year (int): last year of model Returns: the simulated sea level rise (m) """ # Load IPCC SLR data df = pd.read_excel(WORKBOOK, sheet_name=SHEET, index_col='psmsl_id') idx = df.index.get_loc(VERSION) # First row containing values we want df = df.iloc[idx:idx + 5].set_index('quantile') df = df.drop(columns=['process', 'confidence', 'scenario']).T df.index.name = 'year' percentiles = df.columns.values / 100 for i, row in df.iterrows(): values = row.values # Set valid range of probability distribution function x_min = row[5] + (row[5] - row[50]) x_max = row[95] + (row[95] - row[50]) x = np.linspace(x_min, x_max, num=1000) # Fit Cauchy distribution loc, scale = optimize.curve_fit(get_cdf, values, percentiles)[0] if x_min == x_max: # Harcode values for start year (when everything is zero) scale = 0.001 x_min = -0.001 x_max = 0.001 df.loc[i, 'loc'] = loc df.loc[i, 'scale'] = scale df.loc[i, 'min'] = x_min df.loc[i, 'max'] = x_max # Interpolate intermediate values index = np.arange(df.index.min(), df.index.max() + 1) df = df.reindex(index).interpolate(method='linear') df = df.loc[start_year:end_year] # Trim dataframe to given range # Prepare array for SLR values slr = np.zeros([len(df), n_runs], dtype=float) for i, (year, row) in enumerate(df.iterrows()): # Get probability distribution for current year dist = stats.cauchy(loc=row['loc'], scale=row['scale']) # Generate random samples for factor in range(2, 1000): s_raw = dist.rvs(n_runs * factor) # Take first samples within valid range s = s_raw[(s_raw > row['min']) & (s_raw < row['max'])] if len(s) > n_runs: break # Success else: continue # We need more samples, so try larger factor # Add the requried number of samples slr[i] = s[:n_runs] # Sort each row to make SLR trajectories smooth slr = np.sort(slr, axis=1) # Randomise run order (column-wise) slr = np.random.permutation(slr.T).T return slr