# Roches Beach coastal hazard probabilistic assessment ## Workflow #### 1. Open anaconda prompt. Double-click `anaconda-prompt.bat` (All further commands should be entered into this prompt) #### 2. Generate ZSA and ZRFC recession tables. The package required to calculate setbacks based on Nielsen et al. (1992) can be found here: http://git.wrl.unsw.edu.au:3000/coastal/nielsen ```shell > cd lidar > python generate_recession_tables.py ``` The setback chainages are saved here: lidar/ ├── recession_results_zrfc.csv └── recession_results_zsa.csv The profile cross-sections are plotted here: lidar/ └── png ├── P1.png ├── P2.png └── ... #### 3. Prepare input files Update values in `adopted-input-values.xlsx` Generate `yaml` files: ```shell > cd ../inputs > python get_adopted_input_values.py ``` The `yaml` files are saved here: probabilistic-analysis/ ├── Roches P1.yaml ├── Roches P2.yaml └── ... #### 4. Run probabilistic simulation ```shell > cd ../probabilistic-analysis > python probabilistic_assessment.py ``` Chainage setbacks are saved in csv files, and diagnostics are saved in csv/png files here: probabilistic-analysis/ └── output_csv │ ├── Roches P1 2022 ZRFC.csv │ ├── Roches P1 2022 ZSA.csv │ ├── Roches P1 2050 ZRFC.csv │ └── ... └── diagnostics ├── Roches P1 2022 ZRFC.csv ├── Roches P1 2022 ZSA.csv ├── Roches P1 ZRFC scatter.png ├── Roches P1 ZRFC timeseries.png └── ... #### 5. Generate hazard line shapefile ```shell > cd ../probabilistic-analysis > python csv_to_shp.py ``` Shapefile is saved here: probabilistic-analysis/ └── output_shp ├── hazard-lines.dbf ├── hazard-lines.prj └── hazard-lines.shp #### 6. Export maps ```shell > cd ../qgis > export.bat ```