# Converts shoreline chainages to MGA coordinates import os import re import sys import ast import json import yaml import argparse import numpy as np from scipy import interpolate import pandas as pd import matplotlib.pyplot as plt from shapely.geometry import LineString import geopandas as gpd from tqdm import tqdm sys.path.insert(0, '../lidar/') from nielsen import Gridder # noqa MGA55 = 28355 # GDA94, MGA Zone 55 BEACH = 'Roches' # Load profile data xlsx_path = '../lidar/Profiles 1 to 12 2019 DEM.xlsx' workbook = pd.ExcelFile(xlsx_path) with open('../lidar/settings.json', 'r') as f: sheets = json.loads(f.read()) # Create grids to convert chainages to eastings and northings grids = {} for s in sheets: names = ['Chainage', 'Easting', 'Northing', 'Elevation'] p = workbook.parse(s, names=names) k = (sheets[s]['block'], sheets[s]['profile']) grids[k] = g = Gridder(chainage=p['Chainage'], elevation=p['Elevation'], easting=p['Easting'], northing=p['Northing']) input_dir = 'output_csv' output_dir = 'output_shp' master = gpd.GeoDataFrame(columns=['name', 'year', 'ep', 'type']) # Load probabilistic recession chainages file_list = [f for f in os.listdir(input_dir) if f.startswith(BEACH)] df = pd.DataFrame() for f in file_list: info = re.search(r'(\d{4}) (Z\w+)', f).groups() data = pd.read_csv(os.path.join(input_dir, f)) ep_cols = [c for c in data.columns if c.startswith('ep_')] for i, d in data.iterrows(): row = {} # row['beach'] = BEACH row['block'] = d['block'] row['profile'] = d['profile'] row['year'] = int(info[0]) row['type'] = info[1] for e in ep_cols: row['ep'] = e[3:] ch = d[e] g = grids[d['block'], d['profile']] # Get correct gridder east, north = g.from_chainage(ch) row['easting'] = east.round(3) row['northing'] = north.round(3) df = pd.concat([df, pd.DataFrame([row])]) # Convert floats to int for col in ['block', 'profile', 'year']: df[col] = df[col].astype(int) df = df.set_index(['year', 'type', 'ep', 'block', 'profile']).sort_index() years = df.index.unique(level='year') types = df.index.unique(level='type') eps = df.index.unique(level='ep') lines = [] for y in years: for t in types: for e in eps: line = {} line['year'] = y line['type'] = t line['ep'] = str(e) line['geometry'] = LineString(df.loc[y, t, e].to_numpy()) lines.append(line) gdf = gpd.GeoDataFrame(lines).set_geometry('geometry') gdf = gdf.set_crs(MGA55) gdf.to_file(os.path.join(output_dir, 'hazard-lines.shp'), driver='ESRI Shapefile')