"""Calculate probability distributions for IPCC sea level rise forecasts. This will calculate the values required to generate triangular distributions, i.e. 'min', 'mode', and 'max' in the `numpy.random.triang()` function. The values are written to 'triang-values.csv' D. Howe d.howe@wrl.unsw.edu.au 2022-05-05 """ import os import re import numpy as np import pandas as pd from scipy import stats, optimize import matplotlib.pyplot as plt PLOT = False def norm_cdf(x, loc, scale): """Calculate cumulative density function, using normal distribution.""" return stats.norm(loc=loc, scale=scale).cdf(x) def triang_cdf(x, loc, scale, c): """Calculate cumulative density function, using triangular distribution.""" return stats.triang(loc=loc, scale=scale, c=c).cdf(x) # Read data xlsx_path = '20220502_Probabilistic_Erosion_Parameters_1st_DRAFT_FOR_DISCUSSION.xlsx' df = pd.read_excel(xlsx_path, sheet_name='IPCC AR6', index_col=[0, 1, 2, 3, 4]) df = df.sort_index() dff = df.loc[838, 'total', 'medium', 'ssp585'].T dff.index.name = 'year' percentiles = dff.columns.to_numpy() / 100 # Make SLR relative to 2020 level (at the 50th percentile) dff -= dff.loc[2020, 50] for i, row in dff.iterrows(): values = row.to_numpy() # Fit normal distribution loc, scale = optimize.curve_fit(norm_cdf, values, percentiles)[0] p_norm = {'loc': loc, 'scale': scale} # Fit triangular distribution loc, scale, c = optimize.curve_fit(triang_cdf, values, percentiles, p0=[values[0] - 0.1, 0.5, 0.5])[0] p_triang = {'loc': loc, 'scale': scale, 'c': c} # Get triangular distribution parameters left = p_triang['loc'] centre = p_triang['loc'] + p_triang['scale'] * p_triang['c'] right = p_triang['loc'] + p_triang['scale'] dff.loc[i, 'min'] = left dff.loc[i, 'mode'] = centre dff.loc[i, 'max'] = right if PLOT: fig, ax = plt.subplots(1, 2, figsize=(10, 3)) x_min = stats.triang.ppf(0.01, **p_triang) - 0.2 x_max = stats.triang.ppf(0.99, **p_triang) + 0.2 x = np.linspace(x_min, x_max, num=1000) ax[0].plot(x, 100 * stats.norm.cdf(x, **p_norm)) ax[0].plot(x, 100 * stats.triang.cdf(x, **p_triang)) ax[0].plot(values, 100 * percentiles, '.', c='#444444') ax[1].plot(x, stats.norm.pdf(x, **p_norm), label='Normal') ax[1].plot(x, stats.triang.pdf(x, **p_triang), label='Triangular') ax[1].plot([], [], '.', c='#444444', label='IPCC data') ax[1].legend() ax[1].axvline(x=left, c='C3') ax[1].axvline(x=centre, c='C3') ax[1].axvline(x=right, c='C3') ax[0].set_ylabel('Percentile', labelpad=10) ax[0].set_title('Cumulative distribution') ax[1].set_title('Probability density') ax[0].annotate(i, (-0.3, 1), xycoords='axes fraction', clip_on=False, size=14) for a in ax: a.set_xlabel('SLR (m)', labelpad=10) a.spines['top'].set_visible(False) a.spines['right'].set_visible(False) plt.show() # Save distribution parameters dff[['min', 'mode', 'max']].to_csv('triang-values.csv', float_format='%0.3f') if PLOT: # Plot all triangular distributions fig, ax = plt.subplots(1, 1, figsize=(8, 4)) cmap = plt.cm.get_cmap('RdBu_r', len(dff)) c = list(cmap(range(cmap.N))) j = -1 for i, row in dff.iterrows(): j += 1 ax.plot(row[['min', 'mode', 'max']], [0, 1, 0], c=c[j]) if j % 2 == 0: ax.annotate(f' {i}', (row['mode'], 1), ha='center', va='bottom', rotation=90) ax.set_xlabel('SLR (m)', labelpad=10) ax.set_ylabel('Probability density (-)', labelpad=10) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) plt.show()