Don't clobber 'i'

master
Dan Howe 3 years ago
parent f1df0c683d
commit ac7c430c80

@ -691,23 +691,23 @@ def process(beach_name, beach_scenario, n_runs, start_year, end_year,
dump_df = dump_df[::100] # Only output every 100th row
dump_df.to_csv(csv_name, float_format='%g')
for i, c in enumerate(dump_df.columns[3:]):
ax[i, j].plot(dump_df.index,
for k, c in enumerate(dump_df.columns[3:]):
ax[k, j].plot(dump_df.index,
dump_df[c],
'.',
color='#aaaaaa',
alpha=0.1,
markersize=2)
ax[i, j].spines['right'].set_visible(False)
ax[i, j].spines['top'].set_visible(False)
ax[k, j].spines['right'].set_visible(False)
ax[k, j].spines['top'].set_visible(False)
if j == 0:
ax[i, 0].yaxis.set_label_coords(-0.4, 0.5)
ax[k, 0].yaxis.set_label_coords(-0.4, 0.5)
label = c.replace('(', '\n(')
ax[i, 0].set_ylabel(label,
ax[k, 0].set_ylabel(label,
va='top',
linespacing=1.5)
ax[i, j].set_xlabel('Encounter probability (%)',
ax[k, j].set_xlabel('Encounter probability (%)',
labelpad=10)
ax[0, j].set_title(year)
@ -769,7 +769,7 @@ def process(beach_name, beach_scenario, n_runs, start_year, end_year,
baseline = r[:, 1]
sdd = storm_demand_dist[:, 1]
for i in range(len(slr)):
for k in range(len(slr)):
pe = [
matplotlib.patheffects.Stroke(linewidth=5,
foreground='#ffffff',
@ -777,8 +777,8 @@ def process(beach_name, beach_scenario, n_runs, start_year, end_year,
matplotlib.patheffects.Normal()
]
ax[3, 0].plot([years[i], years[i]],
[baseline[i], baseline[i] + sdd[i]],
ax[3, 0].plot([years[k], years[k]],
[baseline[k], baseline[k] + sdd[k]],
c='C0',
path_effects=pe)
@ -786,7 +786,7 @@ def process(beach_name, beach_scenario, n_runs, start_year, end_year,
r_max = (baseline + sdd).max()
ax[3, 0].axhline(y=r_max, c='C3', linestyle=':')
i = len(years) - 1
k = len(years) - 1
for a in ax[:, 0]:
a.set_xlim(right=years[-1])
@ -810,7 +810,7 @@ def process(beach_name, beach_scenario, n_runs, start_year, end_year,
ax[0, 0].set_title((f'Probabilistic trajectories\n'
f'(first 100 out of {n_runs:,} runs)'))
ax[0, 1].set_title(
f'Probability\ndistribution\nin year {years[i]}')
f'Probability\ndistribution\nin year {years[k]}')
ax[0, 0].set_ylabel('Sea level (m)', labelpad=10)
ax[1, 0].set_ylabel('Bruun recession (m)', labelpad=10)
ax[2, 0].set_ylabel('Underlying recession (m)', labelpad=10)

Loading…
Cancel
Save