Add 'generate_slr_timeseries.py'
parent
c0c130c465
commit
9e8aec2a6d
@ -0,0 +1,105 @@
|
||||
import os
|
||||
import re
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from scipy import stats
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
START_YEAR = 2020
|
||||
END_YEAR = 2100
|
||||
|
||||
n_runs = 100000
|
||||
|
||||
df = pd.read_csv('cauchy-values.csv', index_col=0)
|
||||
years = np.arange(START_YEAR, END_YEAR + 1)
|
||||
|
||||
# Squeeze distribution to zero in 2020
|
||||
df.loc[2020, 'scale'] = 0.0001
|
||||
df.loc[2020, 'min'] = df.loc[2020, 'loc'] - 0.0001
|
||||
df.loc[2020, 'max'] = df.loc[2020, 'loc'] + 0.0001
|
||||
|
||||
# Interpolate intermediate values
|
||||
df = df.reindex(years).interpolate(method='cubic')
|
||||
|
||||
# Prepare array for SLR values
|
||||
slr = np.zeros([len(years), n_runs], dtype=float)
|
||||
|
||||
for i, (year, row) in enumerate(df.iterrows()):
|
||||
# Get probability distribution
|
||||
dist = stats.cauchy(loc=row['loc'], scale=row['scale'])
|
||||
|
||||
# Generate random samples
|
||||
for factor in range(2, 10):
|
||||
s_raw = dist.rvs(n_runs * factor)
|
||||
|
||||
# Take first samples within valid range
|
||||
s = s_raw[(s_raw > row['min']) & (s_raw < row['max'])]
|
||||
|
||||
if len(s) > n_runs:
|
||||
break # Success
|
||||
else:
|
||||
pass # We need more samples, so try larger factor
|
||||
|
||||
# Add the requried number of samples
|
||||
slr[i] = s[:n_runs]
|
||||
|
||||
# Sort each row to make SLR trajectories smooth
|
||||
slr = np.sort(slr, axis=1)
|
||||
|
||||
# Randomise run order (column-wise)
|
||||
slr = np.random.permutation(slr.T).T
|
||||
|
||||
# Set first year to zero
|
||||
slr[0, :] = df.loc[2020, 'loc']
|
||||
|
||||
# Plot first few trajectories
|
||||
if True:
|
||||
fig, ax = plt.subplots(1,
|
||||
3,
|
||||
figsize=(12, 5),
|
||||
sharey=True,
|
||||
gridspec_kw={
|
||||
'wspace': 0.05,
|
||||
'width_ratios': [3, 1, 1]
|
||||
})
|
||||
|
||||
ax[0].plot(years, slr[:, :100], c='#444444', lw=0.2)
|
||||
ax[1].hist(slr[-1, :],
|
||||
bins=100,
|
||||
fc='#cccccc',
|
||||
ec='#aaaaaa',
|
||||
orientation='horizontal')
|
||||
|
||||
i = len(years) - 1
|
||||
dff = df.T.loc['5':'95', years[i]]
|
||||
ax[2].hist(
|
||||
slr[i, :],
|
||||
bins=100,
|
||||
fc='#cccccc',
|
||||
ec='#aaaaaa',
|
||||
orientation='horizontal',
|
||||
cumulative=True,
|
||||
)
|
||||
ax[2].plot(dff.index.astype(int) / 100 * n_runs,
|
||||
dff.values,
|
||||
'o',
|
||||
c='C3',
|
||||
label='IPCC AR6 data')
|
||||
|
||||
ax[0].set_xlim(right=years[i])
|
||||
|
||||
ax[0].set_title(f'SLR trajectories\n(first 100 out of {n_runs:,} runs)')
|
||||
ax[1].set_title(f'Probability\ndistribution\nin year {years[i]}')
|
||||
ax[2].set_title(f'Cumulative\ndistribution\nin year {years[i]}')
|
||||
ax[0].set_ylabel('SLR (m)', labelpad=10)
|
||||
|
||||
ax[2].legend()
|
||||
|
||||
ax[0].spines['top'].set_visible(False)
|
||||
ax[0].spines['right'].set_visible(False)
|
||||
|
||||
for a in ax[1:]:
|
||||
a.spines['top'].set_visible(False)
|
||||
a.spines['right'].set_visible(False)
|
||||
a.spines['bottom'].set_visible(False)
|
||||
a.xaxis.set_visible(False)
|
Loading…
Reference in New Issue