diff --git a/probabilistic-analysis/csv_to_shp.py b/probabilistic-analysis/csv_to_shp.py new file mode 100644 index 0000000..dace762 --- /dev/null +++ b/probabilistic-analysis/csv_to_shp.py @@ -0,0 +1,95 @@ +# Converts shoreline chainages to MGA coordinates + +import os +import re +import sys +import ast +import json +import yaml +import argparse +import numpy as np +from scipy import interpolate +import pandas as pd +import matplotlib.pyplot as plt +from shapely.geometry import LineString +import geopandas as gpd +from tqdm import tqdm + +sys.path.insert(0, '../lidar/') +from nielsen import Gridder # noqa + +MGA55 = 28355 # GDA94, MGA Zone 55 +BEACH = 'Roches Beach' + +# Load profile data +xlsx_path = '../lidar/Profiles 1 to 12 2019 DEM.xlsx' +workbook = pd.ExcelFile(xlsx_path) + +with open('../lidar/settings.json', 'r') as f: + sheets = json.loads(f.read()) + +# Create grids to convert chainages to eastings and northings +grids = {} +for s in sheets: + names = ['Chainage', 'Easting', 'Northing', 'Elevation'] + p = workbook.parse(s, names=names) + k = (sheets[s]['block'], sheets[s]['profile']) + grids[k] = g = Gridder(chainage=p['Chainage'], + elevation=p['Elevation'], + easting=p['Easting'], + northing=p['Northing']) + +input_dir = 'output_csv' +output_dir = 'output_shp' + +master = gpd.GeoDataFrame(columns=['name', 'year', 'ep', 'type']) + +# Load probabilistic recession chainages +file_list = [f for f in os.listdir(input_dir) if f.startswith(BEACH)] + +df = pd.DataFrame() +for f in file_list: + info = re.search(r'(\d{4}) (Z\w+)', f).groups() + data = pd.read_csv(os.path.join(input_dir, f)) + + ep_cols = [c for c in data.columns if c.startswith('ep_')] + for i, d in data.iterrows(): + row = {} + # row['beach'] = BEACH + row['block'] = d['block'] + row['profile'] = d['profile'] + row['year'] = int(info[0]) + row['type'] = info[1] + for e in ep_cols: + row['ep'] = e[3:] + ch = d[e] + g = grids[d['block'], d['profile']] # Get correct gridder + east, north = g.from_chainage(ch) + row['easting'] = east.round(3) + row['northing'] = north.round(3) + df = df.append(row, ignore_index=True) + +# Convert floats to int +for col in ['block', 'profile', 'year']: + df[col] = df[col].astype(int) + +df = df.set_index(['year', 'type', 'ep', 'block', 'profile']).sort_index() +years = df.index.unique(level='year') +types = df.index.unique(level='type') +eps = df.index.unique(level='ep') + +lines = [] +for y in years: + for t in types: + for e in eps: + line = {} + line['year'] = y + line['type'] = t + line['ep'] = str(e) + line['geometry'] = LineString(df.loc[y, t, e].to_numpy()) + lines.append(line) + +gdf = gpd.GeoDataFrame(lines).set_geometry('geometry') +gdf = gdf.set_crs(MGA55) +gdf.to_file(os.path.join(output_dir, 'hazard-lines.shp'), + driver='ESRI Shapefile')