You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
224 lines
9.3 KiB
Fortran
224 lines
9.3 KiB
Fortran
! This is a interface-file for Python
|
|
! This file contains a interface to RIND a subroutine
|
|
! for computing multivariate normal expectations.
|
|
! The file is self contained and should compile without errors on (Fortran90)
|
|
! standard Fortran compilers.
|
|
!
|
|
! The interface was written by
|
|
! Per Andreas Brodtkorb
|
|
! Norwegian Defence Research Establishment
|
|
! P.O. Box 115
|
|
! N-3191 Horten
|
|
! Norway
|
|
! Email: Per.Brodtkorb@ffi.no
|
|
!
|
|
!
|
|
! RIND Computes multivariate normal expectations
|
|
!
|
|
! E[Jacobian*Indicator|Condition ]*f_{Xc}(xc(:,ix))
|
|
! where
|
|
! "Indicator" = I{ H_lo(i) < X(i) < H_up(i), i=1:N_t+N_d }
|
|
! "Jacobian" = J(X(Nt+1),...,X(Nt+Nd+Nc)), special case is
|
|
! "Jacobian" = |X(Nt+1)*...*X(Nt+Nd)|=|Xd(1)*Xd(2)..Xd(Nd)|
|
|
! "condition" = Xc=xc(:,ix), ix=1,...,Nx.
|
|
! X = [Xt; Xd; Xc], a stochastic vector of Multivariate Gaussian
|
|
! variables where Xt,Xd and Xc have the length Nt, Nd and Nc,
|
|
! respectively. (Recommended limitations Nx,Nt<=100, Nd<=6 and Nc<=10)
|
|
!
|
|
! CALL: [value,error,terror,inform]=rind(S,m,indI,Blo,Bup,INFIN,xc,
|
|
! Nt,SCIS,XcScale,ABSEPS,RELEPS,COVEPS,MAXPTS,MINPTS,seed,NIT,xCutOff,Nc1c2);
|
|
!
|
|
!
|
|
! VALUE = estimated value for the expectation as explained above size 1 x Nx
|
|
! ERROR = estimated sampling error, with 99% confidence level. size 1 x Nx
|
|
! TERROR = estimated truncation error
|
|
! INFORM = INTEGER, termination status parameter: (not implemented yet)
|
|
! if INFORM = 0, normal completion with ERROR < EPS;
|
|
! if INFORM = 1, completion with ERROR > EPS and MAXPTS
|
|
! function vaules used; increase MAXPTS to
|
|
! decrease ERROR;
|
|
! if INFORM = 2, N > 100 or N < 1.
|
|
!
|
|
! S = Covariance matrix of X=[Xt;Xd;Xc] size Ntdc x Ntdc (Ntdc=Nt+Nd+Nc)
|
|
! m = the expectation of X=[Xt;Xd;Xc] size N x 1
|
|
! indI = vector of indices to the different barriers in the
|
|
! indicator function, length NI, where NI = Nb+1
|
|
! (NB! restriction indI(1)=0, indI(NI)=Nt+Nd )
|
|
! B_lo,B_up = Lower and upper barriers used to compute the integration
|
|
! limits, Hlo and Hup, respectively. size Mb x Nb
|
|
! INFIN = INTEGER, array of integration limits flags: size 1 x Nb (in)
|
|
! if INFIN(I) < 0, Ith limits are (-infinity, infinity);
|
|
! if INFIN(I) = 0, Ith limits are (-infinity, Hup(I)];
|
|
! if INFIN(I) = 1, Ith limits are [Hlo(I), infinity);
|
|
! if INFIN(I) = 2, Ith limits are [Hlo(I), Hup(I)].
|
|
! xc = values to condition on size Nc x Nx
|
|
! Nt = size of Xt
|
|
! SCIS = Integer defining integration method
|
|
! 1 Integrate all by SADAPT for Ndim<9 and by KRBVRC otherwise
|
|
! 2 Integrate all by SADAPT by Genz (1992) (Fast)
|
|
! 3 Integrate all by KRBVRC by Genz (1993) (Fast)
|
|
! 4 Integrate all by KROBOV by Genz (1992) (Fast)
|
|
! 5 Integrate all by RCRUDE by Genz (1992)
|
|
! XcScale = REAL to scale the conditinal probability density, i.e.,
|
|
! f_{Xc} = exp(-0.5*Xc*inv(Sxc)*Xc + XcScale)
|
|
! ABSEPS = REAL absolute error tolerance.
|
|
! RELEPS = REAL relative error tolerance.
|
|
! COVEPS = REAL error in cholesky factorization
|
|
! MAXPTS = INTEGER, maximum number of function values allowed. This
|
|
! parameter can be used to limit the time. A sensible
|
|
! strategy is to start with MAXPTS = 1000*N, and then
|
|
! increase MAXPTS if ERROR is too large.
|
|
! MINPTS = INTEGER, minimum number of function values allowed
|
|
! SEED = INTEGER, seed to the random generator used in the integrations
|
|
! NIT = INTEGER, maximum number of Xt variables to integrate
|
|
! xCutOff = REAL upper/lower truncation limit of the marginal normal CDF
|
|
! Nc1c2 = INTEGER number of times to use the regression equation to restrict
|
|
! integration area. Nc1c2 = 1,2 is recommended.
|
|
!
|
|
!
|
|
! If Mb<Nc+1 then B_lo(Mb+1:Nc+1,:) is assumed to be zero.
|
|
! The relation to the integration limits Hlo and Hup are as follows
|
|
! IF INFIN(j)>=0,
|
|
! IF INFIN(j)~=0, Hlo(i)=Blo(1,j)+Blo(2:Mb,j).'*xc(1:Mb-1,ix),
|
|
! IF INFIN(j)~=1, Hup(i)=Bup(1,j)+Bup(2:Mb,j).'*xc(1:Mb-1,ix),
|
|
!
|
|
! where i=indI(j-1)+1:indI(j), j=2:NI, ix=1:Nx
|
|
!
|
|
! This file was successfully compiled for matlab 5.3
|
|
! using Compaq Visual Fortran 6.1, and Windows 2000 and windows XP.
|
|
! The example here uses Fortran90 source.
|
|
! First, you will need to modify your mexopts.bat file.
|
|
! To find it, issue the command prefdir(1) from the Matlab command line,
|
|
! the directory it answers with will contain your mexopts.bat file.
|
|
! Open it for editing. The first section will look like:
|
|
!
|
|
!rem ********************************************************************
|
|
!rem General parameters
|
|
!rem ********************************************************************
|
|
!set MATLAB=%MATLAB%
|
|
!set DF_ROOT=C:\Program Files\Microsoft Visual Studio
|
|
!set VCDir=%DF_ROOT%\VC98
|
|
!set MSDevDir=%DF_ROOT%\Common\msdev98
|
|
!set DFDir=%DF_ROOT%\DF98
|
|
!set PATH=%MSDevDir%\bin;%DFDir%\BIN;%VCDir%\BIN;%PATH%
|
|
!set INCLUDE=%DFDir%\INCLUDE;%DFDir%\IMSL\INCLUDE;%INCLUDE%
|
|
!set LIB=%DFDir%\LIB;%VCDir%\LIB
|
|
!
|
|
! then you are ready to compile this file at the matlab prompt using the following command:
|
|
!
|
|
! mex -O -output mexrind2007 intmodule.f jacobmod.f rind2007.f mexrind2007.f
|
|
!
|
|
|
|
|
|
subroutine set_constants(method,xcscale,abseps,releps,coveps,
|
|
& maxpts,minpts,nit,xcutoff,Nc1c2, NINT1, xsplit)
|
|
use rindmod, only : setconstants
|
|
use rind71mod, only : setdata
|
|
double precision :: xcscale,abseps,releps,coveps,xcutoff,xsplit
|
|
integer method, maxpts, minpts, nit, Nc1c2, NINT1
|
|
Cf2py double precision, optional :: xcscale = 0.0e0
|
|
Cf2py double precision, optional :: abseps = 0.01e0
|
|
Cf2py double precision, optional :: releps = 0.01e0
|
|
Cf2py double precision, optional :: coveps = 1.0e-10
|
|
Cf2py double precision, optional :: xcutoff = 5.0e0
|
|
Cf2py double precision, optional :: xsplit = 5.0e0
|
|
|
|
Cf2py integer, optional :: method = 3
|
|
Cf2py integer, optional :: minpts = 0
|
|
Cf2py integer, optional :: maxpts = 40000
|
|
Cf2py integer, optional :: nit = 1000
|
|
Cf2py integer, optional :: Nc1c2 = 2
|
|
Cf2py integer, optional :: nint1 = 2
|
|
|
|
! Method>0
|
|
call setconstants(method,xcscale,abseps,releps,coveps,
|
|
& maxpts,minpts,nit,xcutoff,Nc1c2)
|
|
! method==0
|
|
call SETDATA(method,xcscale,abseps,releps,coveps,
|
|
& nit, xCutOff,NINT1,xsplit)
|
|
return
|
|
end subroutine set_constants
|
|
SUBROUTINE show_constants()
|
|
use rindmod
|
|
print *, 'method=', mMethod
|
|
print *, 'xcscale=', mXcScale
|
|
print *, 'abseps=', mAbsEps
|
|
print *, 'releps=', mRelEps
|
|
print *, 'coveps=', mCovEps
|
|
print *, 'maxpts=', mMaxPts
|
|
print *, 'minpts=', mMinPts
|
|
print *, 'nit=', mNit
|
|
print *, 'xcutOff=', mXcutOff
|
|
print *, 'Nc1c2=', mNc1c2
|
|
end subroutine show_constants
|
|
|
|
SUBROUTINE rind(VALS,ERR,TERR,Big,Ex,Xc,Nt,INDI,Blo,Bup,
|
|
& INFIN,seed1,Ntdc,Nc,Nx,Ni,Mb,Nb,Nx1)
|
|
USE rindmod
|
|
USE rind71mod, only : rind71
|
|
IMPLICIT NONE
|
|
INTEGER :: Ntd
|
|
C INTEGER :: Nj,K, I
|
|
INTEGER :: seed1
|
|
integer :: Nx,Nx1,Nt, Nc,Ntdc,Ni,Nb,Mb
|
|
DOUBLE PRECISION, dimension(Ntdc,Ntdc) :: BIG
|
|
DOUBLE PRECISION, dimension(Ntdc) :: Ex
|
|
DOUBLE PRECISION, dimension(Nc,Nx1) :: Xc
|
|
DOUBLE PRECISION, dimension(Mb,Nb) :: Blo,Bup
|
|
DOUBLE PRECISION, dimension(Nx) :: VALS, ERR,TERR
|
|
INTEGER, dimension(Ni) :: IndI
|
|
INTEGER, DIMENSION(Nb) :: INFIN
|
|
INTEGER, ALLOCATABLE :: seed(:)
|
|
INTEGER :: seed_size
|
|
Cf2py integer, intent(hide), depend(Ex) :: Ntdc = len(Ex)
|
|
Cf2py integer, intent(hide), depend(Xc) :: Nc = shape(Xc,0)
|
|
Cf2py integer, intent(hide), depend(Xc) :: Nx1 = shape(Xc,1)
|
|
Cf2py integer, intent(hide), depend(Xc) :: Nx = max(shape(Xc,1),1)
|
|
Cf2py integer, intent(hide), depend(Blo) :: Mb = shape(Blo,0), Nb = shape(Blo,1),
|
|
Cf2py integer, intent(hide), depend(Indi) :: Ni = len(Indi)
|
|
Cf2py depend(Ntdc) Big
|
|
Cf2py depend(Nb) INFIN
|
|
Cf2py depend(Mb,Nb) Bup
|
|
Cf2py double precision, intent(out), depend(Nx) :: VALS
|
|
Cf2py double precision, intent(out), depend(Nx) :: ERR
|
|
Cf2py double precision, intent(out), depend(Nx) :: TERR
|
|
|
|
C print *, 'Ntdc=', Ntdc,' Nt=',Nt,' Nc=',Nc
|
|
C print *, 'Nx=', Nx, 'Mb=', Mb, ' Nb=', Nb, ' Ni=',Ni
|
|
C Ni = Nb+1
|
|
C Nx = max(Nx1,1)
|
|
if (Ni.EQ.Nb+1) then
|
|
else
|
|
print *, '(ni==nb+1) failed: rind:ni=', Ni, ', nb=',Nb
|
|
return
|
|
endif
|
|
|
|
Ntd = Ntdc - Nc;
|
|
! Nd = Ntd - Nt
|
|
|
|
IF (Ntd.EQ.INDI(Ni)) THEN
|
|
! Call the computational subroutine.
|
|
IF (mMethod.gt.0) THEN
|
|
CALL random_seed(SIZE=seed_size)
|
|
ALLOCATE(seed(seed_size))
|
|
!print *,'rindinterface seed', seed1
|
|
CALL random_seed(GET=seed(1:seed_size)) ! get current state
|
|
seed(1:seed_size)=seed1 ! change seed
|
|
CALL random_seed(PUT=seed(1:seed_size))
|
|
CALL random_seed(GET=seed(1:seed_size)) ! get current state
|
|
!print *,'rindinterface seed', seed
|
|
DEALLOCATE(seed)
|
|
CALL RINDD(VALS,ERR,TERR,Big,Ex,Xc,Nt,INDI,Blo,Bup,INFIN)
|
|
ELSE
|
|
CALL RIND71(VALS,Big,Ex,Xc,Nt,INDI,Blo,Bup)
|
|
ERR(:) = -1
|
|
TERR(:) = -1
|
|
ENDIF
|
|
ELSE
|
|
print *,'INDI(Ni) must equal Nt+Nd!'
|
|
ENDIF
|
|
|
|
RETURN
|
|
END SUBROUTINE rind
|
|
|