You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pywafo/wafo/stats/_tukeylambda_stats.py

202 lines
7.0 KiB
Python

from __future__ import division, print_function, absolute_import
import numpy as np
from numpy import poly1d
from scipy.special import beta
# The following code was used to generate the Pade coefficients for the
# Tukey Lambda variance function. Version 0.17 of mpmath was used.
#---------------------------------------------------------------------------
# import mpmath as mp
#
# mp.mp.dps = 60
#
# one = mp.mpf(1)
# two = mp.mpf(2)
#
# def mpvar(lam):
# if lam == 0:
# v = mp.pi**2 / three
# else:
# v = (two / lam**2) * (one / (one + two*lam) -
# mp.beta(lam + one, lam + one))
# return v
#
# t = mp.taylor(mpvar, 0, 8)
# p, q = mp.pade(t, 4, 4)
# print "p =", [mp.fp.mpf(c) for c in p]
# print "q =", [mp.fp.mpf(c) for c in q]
#---------------------------------------------------------------------------
# Pade coefficients for the Tukey Lambda variance function.
_tukeylambda_var_pc = [3.289868133696453, 0.7306125098871127,
-0.5370742306855439, 0.17292046290190008,
-0.02371146284628187]
_tukeylambda_var_qc = [1.0, 3.683605511659861, 4.184152498888124,
1.7660926747377275, 0.2643989311168465]
# numpy.poly1d instances for the numerator and denominator of the
# Pade approximation to the Tukey Lambda variance.
_tukeylambda_var_p = poly1d(_tukeylambda_var_pc[::-1])
_tukeylambda_var_q = poly1d(_tukeylambda_var_qc[::-1])
def tukeylambda_variance(lam):
"""Variance of the Tukey Lambda distribution.
Parameters
----------
lam : array_like
The lambda values at which to compute the variance.
Returns
-------
v : ndarray
The variance. For lam < -0.5, the variance is not defined, so
np.nan is returned. For lam = 0.5, np.inf is returned.
Notes
-----
In an interval around lambda=0, this function uses the [4,4] Pade
approximation to compute the variance. Otherwise it uses the standard
formula (http://en.wikipedia.org/wiki/Tukey_lambda_distribution). The
Pade approximation is used because the standard formula has a removable
discontinuity at lambda = 0, and does not produce accurate numerical
results near lambda = 0.
"""
lam = np.asarray(lam)
shp = lam.shape
lam = np.atleast_1d(lam).astype(np.float64)
# For absolute values of lam less than threshold, use the Pade
# approximation.
threshold = 0.075
# Play games with masks to implement the conditional evaluation of
# the distribution.
# lambda < -0.5: var = nan
low_mask = lam < -0.5
# lambda == -0.5: var = inf
neghalf_mask = lam == -0.5
# abs(lambda) < threshold: use Pade approximation
small_mask = np.abs(lam) < threshold
# else the "regular" case: use the explicit formula.
reg_mask = ~(low_mask | neghalf_mask | small_mask)
# Get the 'lam' values for the cases where they are needed.
small = lam[small_mask]
reg = lam[reg_mask]
# Compute the function for each case.
v = np.empty_like(lam)
v[low_mask] = np.nan
v[neghalf_mask] = np.inf
if small.size > 0:
# Use the Pade approximation near lambda = 0.
v[small_mask] = _tukeylambda_var_p(small) / _tukeylambda_var_q(small)
if reg.size > 0:
v[reg_mask] = (2.0 / reg**2) * (1.0 / (1.0 + 2 * reg) -
beta(reg + 1, reg + 1))
v.shape = shp
return v
# The following code was used to generate the Pade coefficients for the
# Tukey Lambda kurtosis function. Version 0.17 of mpmath was used.
#---------------------------------------------------------------------------
# import mpmath as mp
#
# mp.mp.dps = 60
#
# one = mp.mpf(1)
# two = mp.mpf(2)
# three = mp.mpf(3)
# four = mp.mpf(4)
#
# def mpkurt(lam):
# if lam == 0:
# k = mp.mpf(6)/5
# else:
# numer = (one/(four*lam+one) - four*mp.beta(three*lam+one, lam+one) +
# three*mp.beta(two*lam+one, two*lam+one))
# denom = two*(one/(two*lam+one) - mp.beta(lam+one,lam+one))**2
# k = numer / denom - three
# return k
#
# # There is a bug in mpmath 0.17: when we use the 'method' keyword of the
# # taylor function and we request a degree 9 Taylor polynomial, we actually
# # get degree 8.
# t = mp.taylor(mpkurt, 0, 9, method='quad', radius=0.01)
# t = [mp.chop(c, tol=1e-15) for c in t]
# p, q = mp.pade(t, 4, 4)
# print "p =", [mp.fp.mpf(c) for c in p]
# print "q =", [mp.fp.mpf(c) for c in q]
#---------------------------------------------------------------------------
# Pade coefficients for the Tukey Lambda kurtosis function.
_tukeylambda_kurt_pc = [1.2, -5.853465139719495, -22.653447381131077,
0.20601184383406815, 4.59796302262789]
_tukeylambda_kurt_qc = [1.0, 7.171149192233599, 12.96663094361842,
0.43075235247853005, -2.789746758009912]
# numpy.poly1d instances for the numerator and denominator of the
# Pade approximation to the Tukey Lambda kurtosis.
_tukeylambda_kurt_p = poly1d(_tukeylambda_kurt_pc[::-1])
_tukeylambda_kurt_q = poly1d(_tukeylambda_kurt_qc[::-1])
def tukeylambda_kurtosis(lam):
"""Kurtosis of the Tukey Lambda distribution.
Parameters
----------
lam : array_like
The lambda values at which to compute the variance.
Returns
-------
v : ndarray
The variance. For lam < -0.25, the variance is not defined, so
np.nan is returned. For lam = 0.25, np.inf is returned.
"""
lam = np.asarray(lam)
shp = lam.shape
lam = np.atleast_1d(lam).astype(np.float64)
# For absolute values of lam less than threshold, use the Pade
# approximation.
threshold = 0.055
# Use masks to implement the conditional evaluation of the kurtosis.
# lambda < -0.25: kurtosis = nan
low_mask = lam < -0.25
# lambda == -0.25: kurtosis = inf
negqrtr_mask = lam == -0.25
# lambda near 0: use Pade approximation
small_mask = np.abs(lam) < threshold
# else the "regular" case: use the explicit formula.
reg_mask = ~(low_mask | negqrtr_mask | small_mask)
# Get the 'lam' values for the cases where they are needed.
small = lam[small_mask]
reg = lam[reg_mask]
# Compute the function for each case.
k = np.empty_like(lam)
k[low_mask] = np.nan
k[negqrtr_mask] = np.inf
if small.size > 0:
k[small_mask] = _tukeylambda_kurt_p(small) / _tukeylambda_kurt_q(small)
if reg.size > 0:
numer = (1.0 / (4 * reg + 1) - 4 * beta(3 * reg + 1, reg + 1) +
3 * beta(2 * reg + 1, 2 * reg + 1))
denom = 2 * (1.0/(2 * reg + 1) - beta(reg + 1, reg + 1))**2
k[reg_mask] = numer / denom - 3
# The return value will be a numpy array; resetting the shape ensures that
# if `lam` was a scalar, the return value is a 0-d array.
k.shape = shp
return k