You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
741 lines
24 KiB
Python
741 lines
24 KiB
Python
'''
|
|
CovData1D
|
|
---------
|
|
data : Covariance function values. Size [ny nx nt], all singleton dim. removed.
|
|
args : Lag of first space dimension, length nx.
|
|
h : Water depth.
|
|
tr : Transformation function.
|
|
type : 'enc', 'rot' or 'none'.
|
|
v : Ship speed, if .type='enc'
|
|
phi : Rotation of coordinate system, e.g. direction of ship
|
|
norm : Normalization flag, Logical 1 if autocorrelation, 0 if covariance.
|
|
Rx, ... ,Rtttt : Obvious derivatives of .R.
|
|
note : Memorandum string.
|
|
date : Date and time of creation or change.
|
|
'''
|
|
|
|
from __future__ import division, absolute_import
|
|
import warnings
|
|
import numpy as np
|
|
from numpy import (zeros, ones, sqrt, inf, where, nan,
|
|
atleast_1d, hstack, r_, linspace, flatnonzero, size,
|
|
isnan, finfo, diag, ceil, random, pi)
|
|
from numpy.fft import fft
|
|
from numpy.random import randn
|
|
import scipy.interpolate as interpolate
|
|
from scipy.linalg import toeplitz, lstsq
|
|
from scipy import sparse
|
|
from pylab import stineman_interp
|
|
|
|
from ..containers import PlotData
|
|
from ..misc import sub_dict_select, nextpow2 # , JITImport
|
|
from .. import spectrum as _wafospec
|
|
from scipy.sparse.linalg.dsolve.linsolve import spsolve
|
|
from scipy.sparse.base import issparse
|
|
from scipy.signal.windows import parzen
|
|
# _wafospec = JITImport('wafo.spectrum')
|
|
|
|
__all__ = ['CovData1D']
|
|
|
|
|
|
def _set_seed(iseed):
|
|
if iseed is not None:
|
|
try:
|
|
random.set_state(iseed)
|
|
except:
|
|
random.seed(iseed)
|
|
|
|
|
|
def rndnormnd(mean, cov, cases=1):
|
|
'''
|
|
Random vectors from a multivariate Normal distribution
|
|
|
|
Parameters
|
|
----------
|
|
mean, cov : array-like
|
|
mean and covariance, respectively.
|
|
cases : scalar integer
|
|
number of sample vectors
|
|
|
|
Returns
|
|
-------
|
|
r : matrix of random numbers from the multivariate normal
|
|
distribution with the given mean and covariance matrix.
|
|
|
|
The covariance must be a symmetric, semi-positive definite matrix with
|
|
shape equal to the size of the mean.
|
|
|
|
Example
|
|
-------
|
|
>>> mu = [0, 5]
|
|
>>> S = [[1 0.45], [0.45, 0.25]]
|
|
>>> r = rndnormnd(mu, S, 1)
|
|
|
|
plot(r(:,1),r(:,2),'.')
|
|
|
|
>>> d = 40
|
|
>>> rho = 2 * np.random.rand(1,d)-1
|
|
>>> mu = zeros(d)
|
|
>>> S = (np.dot(rho.T, rho)-diag(rho.ravel()**2))+np.eye(d)
|
|
>>> r = rndnormnd(mu, S, 100)
|
|
|
|
See also
|
|
--------
|
|
np.random.multivariate_normal
|
|
'''
|
|
return np.random.multivariate_normal(mean, cov, cases)
|
|
|
|
|
|
class CovData1D(PlotData):
|
|
|
|
""" Container class for 1D covariance data objects in WAFO
|
|
|
|
Member variables
|
|
----------------
|
|
data : array_like
|
|
args : vector for 1D, list of vectors for 2D, 3D, ...
|
|
|
|
type : string
|
|
spectrum type, one of 'freq', 'k1d', 'enc' (default 'freq')
|
|
lagtype : letter
|
|
lag type, one of: 'x', 'y' or 't' (default 't')
|
|
|
|
|
|
Examples
|
|
--------
|
|
>>> import numpy as np
|
|
>>> import wafo.spectrum as sp
|
|
>>> Sj = sp.models.Jonswap(Hm0=3,Tp=7)
|
|
>>> w = np.linspace(0,4,256)
|
|
>>> S = sp.SpecData1D(Sj(w),w) #Make spectrum object from numerical values
|
|
|
|
See also
|
|
--------
|
|
PlotData
|
|
CovData
|
|
"""
|
|
|
|
def __init__(self, *args, **kwds):
|
|
super(CovData1D, self).__init__(*args, **kwds)
|
|
|
|
self.name = 'WAFO Covariance Object'
|
|
self.type = 'time'
|
|
self.lagtype = 't'
|
|
self.h = inf
|
|
self.tr = None
|
|
self.phi = 0.
|
|
self.v = 0.
|
|
self.norm = 0
|
|
somekeys = ['phi', 'name', 'h', 'tr', 'lagtype', 'v', 'type', 'norm']
|
|
|
|
self.__dict__.update(sub_dict_select(kwds, somekeys))
|
|
|
|
self.setlabels()
|
|
|
|
def setlabels(self):
|
|
''' Set automatic title, x-,y- and z- labels
|
|
|
|
based on type,
|
|
'''
|
|
|
|
N = len(self.type)
|
|
if N == 0:
|
|
raise ValueError(
|
|
'Object does not appear to be initialized, it is empty!')
|
|
|
|
labels = ['', 'ACF', '']
|
|
|
|
if self.lagtype.startswith('t'):
|
|
labels[0] = 'Lag [s]'
|
|
else:
|
|
labels[0] = 'Lag [m]'
|
|
|
|
if self.norm:
|
|
title = 'Auto Correlation Function '
|
|
labels[0] = labels[0].split('[')[0]
|
|
else:
|
|
title = 'Auto Covariance Function '
|
|
|
|
self.labels.title = title
|
|
self.labels.xlab = labels[0]
|
|
self.labels.ylab = labels[1]
|
|
self.labels.zlab = labels[2]
|
|
|
|
def tospecdata(self, rate=None, method='fft', nugget=0.0, trunc=1e-5,
|
|
fast=True):
|
|
'''
|
|
Computes spectral density from the auto covariance function
|
|
|
|
Parameters
|
|
----------
|
|
rate = scalar, int
|
|
1,2,4,8...2^r, interpolation rate for f (default 1)
|
|
method : string
|
|
interpolation method 'stineman', 'linear', 'cubic', 'fft'
|
|
nugget : scalar, real
|
|
nugget effect to ensure that round off errors do not result in
|
|
negative spectral estimates. Good choice might be 10^-12.
|
|
trunc : scalar, real
|
|
truncates all spectral values where S/max(S) < trunc
|
|
0 <= trunc <1 This is to ensure that high frequency
|
|
noise is not added to the spectrum. (default 1e-5)
|
|
fast : bool
|
|
if True : zero-pad to obtain power of 2 length ACF (default)
|
|
otherwise no zero-padding of ACF, slower but more accurate.
|
|
|
|
Returns
|
|
--------
|
|
S : SpecData1D object
|
|
spectral density
|
|
|
|
NB! This routine requires that the covariance is evenly spaced
|
|
starting from zero lag. Currently only capable of 1D matrices.
|
|
|
|
Example:
|
|
>>> import wafo.spectrum.models as sm
|
|
>>> import numpy as np
|
|
>>> import scipy.signal as st
|
|
>>> import pylab
|
|
>>> L = 129
|
|
>>> t = np.linspace(0,75,L)
|
|
>>> R = np.zeros(L)
|
|
>>> win = st.parzen(41)
|
|
>>> R[0:21] = win[20:41]
|
|
>>> R0 = CovData1D(R,t)
|
|
>>> S0 = R0.tospecdata()
|
|
|
|
>>> Sj = sm.Jonswap()
|
|
>>> S = Sj.tospecdata()
|
|
>>> R2 = S.tocovdata()
|
|
>>> S1 = R2.tospecdata()
|
|
>>> abs(S1.data-S.data).max() < 1e-4
|
|
True
|
|
|
|
>>> S1.plot('r-')
|
|
>>> S.plot('b:')
|
|
>>> pylab.show()
|
|
|
|
>>> all(abs(S1.data-S.data)<1e-4)
|
|
|
|
See also
|
|
--------
|
|
spec2cov
|
|
datastructures
|
|
'''
|
|
|
|
dt = self.sampling_period()
|
|
# dt = time-step between data points.
|
|
|
|
acf, unused_ti = atleast_1d(self.data, self.args)
|
|
|
|
if self.lagtype in 't':
|
|
spectype = 'freq'
|
|
ftype = 'w'
|
|
else:
|
|
spectype = 'k1d'
|
|
ftype = 'k'
|
|
|
|
if rate is None:
|
|
rate = 1 # interpolation rate
|
|
else:
|
|
rate = 2 ** nextpow2(rate) # make sure rate is a power of 2
|
|
|
|
# add a nugget effect to ensure that round off errors
|
|
# do not result in negative spectral estimates
|
|
acf[0] = acf[0] + nugget
|
|
n = acf.size
|
|
# embedding a circulant vector and Fourier transform
|
|
|
|
nfft = 2 ** nextpow2(2 * n - 2) if fast else 2 * n - 2
|
|
|
|
if method == 'fft':
|
|
nfft *= rate
|
|
|
|
nf = nfft / 2 # number of frequencies
|
|
acf = r_[acf, zeros(nfft - 2 * n + 2), acf[n - 2:0:-1]]
|
|
|
|
Rper = (fft(acf, nfft).real).clip(0) # periodogram
|
|
RperMax = Rper.max()
|
|
Rper = where(Rper < trunc * RperMax, 0, Rper)
|
|
|
|
S = abs(Rper[0:(nf + 1)]) * dt / pi
|
|
w = linspace(0, pi / dt, nf + 1)
|
|
So = _wafospec.SpecData1D(S, w, type=spectype, freqtype=ftype)
|
|
So.tr = self.tr
|
|
So.h = self.h
|
|
So.norm = self.norm
|
|
|
|
if method != 'fft' and rate > 1:
|
|
So.args = linspace(0, pi / dt, nf * rate)
|
|
if method == 'stineman':
|
|
So.data = stineman_interp(So.args, w, S)
|
|
else:
|
|
intfun = interpolate.interp1d(w, S, kind=method)
|
|
So.data = intfun(So.args)
|
|
So.data = So.data.clip(0) # clip negative values to 0
|
|
return So
|
|
|
|
def sampling_period(self):
|
|
'''
|
|
Returns sampling interval
|
|
|
|
Returns
|
|
---------
|
|
dt : scalar
|
|
sampling interval, unit:
|
|
[s] if lagtype=='t'
|
|
[m] otherwise
|
|
'''
|
|
dt1 = self.args[1] - self.args[0]
|
|
n = size(self.args) - 1
|
|
t = self.args[-1] - self.args[0]
|
|
dt = t / n
|
|
if abs(dt - dt1) > 1e-10:
|
|
warnings.warn('Data is not uniformly sampled!')
|
|
return dt
|
|
|
|
def _is_valid_acf(self):
|
|
if self.data.argmax() != 0:
|
|
raise ValueError('ACF does not have a maximum at zero lag')
|
|
|
|
def sim(self, ns=None, cases=1, dt=None, iseed=None, derivative=False):
|
|
'''
|
|
Simulates a Gaussian process and its derivative from ACF
|
|
|
|
Parameters
|
|
----------
|
|
ns : scalar
|
|
number of simulated points. (default length(S)-1=n-1).
|
|
If ns>n-1 it is assummed that R(k)=0 for all k>n-1
|
|
cases : scalar
|
|
number of replicates (default=1)
|
|
dt : scalar
|
|
step in grid (default dt is defined by the Nyquist freq)
|
|
iseed : int or state
|
|
starting state/seed number for the random number generator
|
|
(default none is set)
|
|
derivative : bool
|
|
if true : return derivative of simulated signal as well
|
|
otherwise
|
|
|
|
Returns
|
|
-------
|
|
xs = a cases+1 column matrix ( t,X1(t) X2(t) ...).
|
|
xsder = a cases+1 column matrix ( t,X1'(t) X2'(t) ...).
|
|
|
|
Details
|
|
-------
|
|
Performs a fast and exact simulation of stationary zero mean
|
|
Gaussian process through circulant embedding of the covariance matrix.
|
|
|
|
If the ACF has a non-empty field .tr, then the transformation is
|
|
applied to the simulated data, the result is a simulation of a
|
|
transformed Gaussian process.
|
|
|
|
Note: The simulation may give high frequency ripple when used with a
|
|
small dt.
|
|
|
|
Example:
|
|
>>> import wafo.spectrum.models as sm
|
|
>>> Sj = sm.Jonswap()
|
|
>>> S = Sj.tospecdata() #Make spec
|
|
>>> R = S.tocovdata()
|
|
>>> x = R.sim(ns=1000,dt=0.2)
|
|
|
|
See also
|
|
--------
|
|
spec2sdat, gaus2dat
|
|
|
|
Reference
|
|
-----------
|
|
C.R Dietrich and G. N. Newsam (1997)
|
|
"Fast and exact simulation of stationary
|
|
Gaussian process through circulant embedding
|
|
of the Covariance matrix"
|
|
SIAM J. SCI. COMPT. Vol 18, No 4, pp. 1088-1107
|
|
'''
|
|
|
|
# TODO fix it, it does not work
|
|
|
|
# Add a nugget effect to ensure that round off errors
|
|
# do not result in negative spectral estimates
|
|
nugget = 0 # 10**-12
|
|
|
|
_set_seed(iseed)
|
|
self._is_valid_acf()
|
|
acf = self.data.ravel()
|
|
n = acf.size
|
|
acf.shape = (n, 1)
|
|
|
|
dT = self.sampling_period()
|
|
|
|
x = zeros((ns, cases + 1))
|
|
|
|
if derivative:
|
|
xder = x.copy()
|
|
|
|
# add a nugget effect to ensure that round off errors
|
|
# do not result in negative spectral estimates
|
|
acf[0] = acf[0] + nugget
|
|
|
|
# Fast and exact simulation of simulation of stationary
|
|
# Gaussian process throug circulant embedding of the
|
|
# Covariance matrix
|
|
floatinfo = finfo(float)
|
|
if (abs(acf[-1]) > floatinfo.eps): # assuming acf(n+1)==0
|
|
m2 = 2 * n - 1
|
|
nfft = 2 ** nextpow2(max(m2, 2 * ns))
|
|
acf = r_[acf, zeros((nfft - m2, 1)), acf[-1:0:-1, :]]
|
|
# warnings,warn('I am now assuming that ACF(k)=0 for k>MAXLAG.')
|
|
else: # ACF(n)==0
|
|
m2 = 2 * n - 2
|
|
nfft = 2 ** nextpow2(max(m2, 2 * ns))
|
|
acf = r_[acf, zeros((nfft - m2, 1)), acf[n - 1:1:-1, :]]
|
|
|
|
# m2=2*n-2
|
|
S = fft(acf, nfft, axis=0).real # periodogram
|
|
|
|
I = S.argmax()
|
|
k = flatnonzero(S < 0)
|
|
if k.size > 0:
|
|
_msg = '''
|
|
Not able to construct a nonnegative circulant vector from ACF.
|
|
Apply parzen windowfunction to the ACF in order to avoid this.
|
|
The returned result is now only an approximation.'''
|
|
|
|
# truncating negative values to zero to ensure that
|
|
# that this noise is not added to the simulated timeseries
|
|
|
|
S[k] = 0.
|
|
|
|
ix = flatnonzero(k > 2 * I)
|
|
if ix.size > 0:
|
|
# truncating all oscillating values above 2 times the peak
|
|
# frequency to zero to ensure that
|
|
# that high frequency noise is not added to
|
|
# the simulated timeseries.
|
|
ix0 = k[ix[0]]
|
|
S[ix0:-ix0] = 0.0
|
|
|
|
trunc = 1e-5
|
|
maxS = S[I]
|
|
k = flatnonzero(S[I:-I] < maxS * trunc)
|
|
if k.size > 0:
|
|
S[k + I] = 0.
|
|
# truncating small values to zero to ensure that
|
|
# that high frequency noise is not added to
|
|
# the simulated timeseries
|
|
|
|
cases1 = int(cases / 2)
|
|
cases2 = int(ceil(cases / 2))
|
|
# Generate standard normal random numbers for the simulations
|
|
|
|
# randn = np.random.randn
|
|
epsi = randn(nfft, cases2) + 1j * randn(nfft, cases2)
|
|
Ssqr = sqrt(S / (nfft)) # sqrt(S(wn)*dw )
|
|
ephat = epsi * Ssqr # [:,np.newaxis]
|
|
y = fft(ephat, nfft, axis=0)
|
|
x[:, 1:cases + 1] = hstack((y[2:ns + 2, 0:cases2].real,
|
|
y[2:ns + 2, 0:cases1].imag))
|
|
|
|
x[:, 0] = linspace(0, (ns - 1) * dT, ns) # (0:dT:(dT*(np-1)))'
|
|
|
|
if derivative:
|
|
Ssqr = Ssqr * \
|
|
r_[0:(nfft / 2 + 1), -(nfft / 2 - 1):0] * 2 * pi / nfft / dT
|
|
ephat = epsi * Ssqr # [:,newaxis]
|
|
y = fft(ephat, nfft, axis=0)
|
|
xder[:, 1:(cases + 1)] = hstack((y[2:ns + 2, 0:cases2].imag -
|
|
y[2:ns + 2, 0:cases1].real))
|
|
xder[:, 0] = x[:, 0]
|
|
|
|
if self.tr is not None:
|
|
print(' Transforming data.')
|
|
g = self.tr
|
|
if derivative:
|
|
for ix in range(cases):
|
|
tmp = g.gauss2dat(x[:, ix + 1], xder[:, ix + 1])
|
|
x[:, ix + 1] = tmp[0]
|
|
xder[:, ix + 1] = tmp[1]
|
|
else:
|
|
for ix in range(cases):
|
|
x[:, ix + 1] = g.gauss2dat(x[:, ix + 1])
|
|
|
|
if derivative:
|
|
return x, xder
|
|
else:
|
|
return x
|
|
|
|
def _get_lag_where_acf_is_almost_zero(self):
|
|
acf = self.data.ravel()
|
|
r0 = acf[0]
|
|
n = len(acf)
|
|
sigma = sqrt(r_[0, r0 ** 2,
|
|
r0 ** 2 + 2 * np.cumsum(acf[1:n - 1] ** 2)] / n)
|
|
k = flatnonzero(np.abs(acf) > 0.1 * sigma)
|
|
if k.size > 0:
|
|
lag = min(k.max() + 3, n)
|
|
return lag
|
|
return n
|
|
|
|
def _get_acf(self, smooth=False):
|
|
self._is_valid_acf()
|
|
acf = atleast_1d(self.data).ravel()
|
|
n = self._get_lag_where_acf_is_almost_zero()
|
|
if smooth:
|
|
rwin = parzen(2 * n + 1)
|
|
return acf[:n] * rwin[n:2 * n]
|
|
else:
|
|
return acf[:n]
|
|
|
|
def _split_cov(self, sigma, i_known, i_unknown):
|
|
'''
|
|
Split covariance matrix between known/unknown observations
|
|
|
|
Returns
|
|
-------
|
|
Soo covariance between known observations
|
|
S11 = covariance between unknown observations
|
|
S1o = covariance between known and unknown obs
|
|
'''
|
|
Soo, So1 = sigma[i_known][:, i_known], sigma[i_known][:, i_unknown]
|
|
S11 = sigma[i_unknown][:, i_unknown]
|
|
return Soo, So1, S11
|
|
|
|
def _update_window(self, idx, i_unknown, num_x, num_acf,
|
|
overlap, nw, num_restored):
|
|
Nsig = len(idx)
|
|
start_max = num_x - Nsig
|
|
if (nw == 0) and (num_restored < len(i_unknown)):
|
|
# move to the next missing data
|
|
start_ix = min(i_unknown[num_restored + 1] - overlap, start_max)
|
|
else:
|
|
start_ix = min(idx[0] + num_acf, start_max)
|
|
|
|
return idx + start_ix - idx[0]
|
|
|
|
def simcond(self, xo, method='approx', i_unknown=None):
|
|
"""
|
|
Simulate values conditionally on observed known values
|
|
|
|
Parameters
|
|
----------
|
|
x : vector
|
|
timeseries including missing data.
|
|
(missing data must be NaN if i_unknown is not given)
|
|
Assumption: The covariance of x is equal to self and have the
|
|
same sample period.
|
|
method : string
|
|
defining method used in the conditional simulation. Options are:
|
|
'approximate': Condition only on the closest points. Quite fast
|
|
'exact' : Exact simulation. Slow for large data sets, may not
|
|
return any result due to near singularity of the covariance
|
|
matrix.
|
|
i_unknown : integers
|
|
indices to spurious or missing data in x
|
|
|
|
Returns
|
|
-------
|
|
sample : ndarray
|
|
a random sample of the missing values conditioned on the observed
|
|
data.
|
|
mu, sigma : ndarray
|
|
mean and standard deviation, respectively, of the missing values
|
|
conditioned on the observed data.
|
|
|
|
Notes
|
|
-----
|
|
SIMCOND generates the missing values from x conditioned on the observed
|
|
values assuming x comes from a multivariate Gaussian distribution
|
|
with zero expectation and Auto Covariance function R.
|
|
|
|
See also
|
|
--------
|
|
CovData1D.sim
|
|
TimeSeries.reconstruct,
|
|
rndnormnd
|
|
|
|
Reference
|
|
---------
|
|
Brodtkorb, P, Myrhaug, D, and Rue, H (2001)
|
|
"Joint distribution of wave height and wave crest velocity from
|
|
reconstructed data with application to ringing"
|
|
Int. Journal of Offshore and Polar Engineering, Vol 11, No. 1,
|
|
pp 23--32
|
|
|
|
Brodtkorb, P, Myrhaug, D, and Rue, H (1999)
|
|
"Joint distribution of wave height and wave crest velocity from
|
|
reconstructed data"
|
|
in Proceedings of 9th ISOPE Conference, Vol III, pp 66-73
|
|
"""
|
|
x = atleast_1d(xo).ravel()
|
|
acf = self._get_acf()
|
|
|
|
num_x = len(x)
|
|
num_acf = len(acf)
|
|
|
|
if i_unknown is not None:
|
|
x[i_unknown] = nan
|
|
i_unknown = flatnonzero(isnan(x))
|
|
num_unknown = len(i_unknown)
|
|
|
|
mu1o = zeros((num_unknown,))
|
|
mu1o_std = zeros((num_unknown,))
|
|
sample = zeros((num_unknown,))
|
|
if num_unknown == 0:
|
|
warnings.warn('No missing data, no point to continue.')
|
|
return sample, mu1o, mu1o_std
|
|
if num_unknown == num_x:
|
|
warnings.warn('All data missing, returning sample from' +
|
|
' the apriori distribution.')
|
|
mu1o_std = ones(num_unknown) * sqrt(acf[0])
|
|
return self.sim(ns=num_unknown, cases=1)[:, 1], mu1o, mu1o_std
|
|
|
|
i_known = flatnonzero(1 - isnan(x))
|
|
|
|
if method.startswith('exac'):
|
|
# exact but slow. It also may not return any result
|
|
if num_acf > 0.3 * num_x:
|
|
Sigma = toeplitz(hstack((acf, zeros(num_x - num_acf))))
|
|
else:
|
|
acf[0] = acf[0] * 1.00001
|
|
Sigma = sptoeplitz(hstack((acf, zeros(num_x - num_acf))))
|
|
Soo, So1, S11 = self._split_cov(Sigma, i_known, i_unknown)
|
|
|
|
if issparse(Sigma):
|
|
So1 = So1.todense()
|
|
S11 = S11.todense()
|
|
S1o_Sooinv = spsolve(Soo + Soo.T, 2 * So1).T
|
|
else:
|
|
Sooinv_So1, _res, _rank, _s = lstsq(Soo + Soo.T, 2 * So1,
|
|
cond=1e-4)
|
|
S1o_Sooinv = Sooinv_So1.T
|
|
mu1o = S1o_Sooinv.dot(x[i_known])
|
|
Sigma1o = S11 - S1o_Sooinv.dot(So1)
|
|
if (diag(Sigma1o) < 0).any():
|
|
raise ValueError('Failed to converge to a solution')
|
|
|
|
mu1o_std = sqrt(diag(Sigma1o))
|
|
sample[:] = rndnormnd(mu1o, Sigma1o, cases=1).ravel()
|
|
|
|
elif method.startswith('appr'):
|
|
# approximating by only condition on the closest points
|
|
|
|
Nsig = min(2 * num_acf, num_x)
|
|
|
|
Sigma = toeplitz(hstack((acf, zeros(Nsig - num_acf))))
|
|
overlap = int(Nsig / 4)
|
|
# indices to the points used
|
|
idx = r_[0:Nsig] + max(0, min(i_unknown[0] - overlap,
|
|
num_x - Nsig))
|
|
mask_unknown = zeros(num_x, dtype=bool)
|
|
# temporary storage of indices to missing points
|
|
mask_unknown[i_unknown] = True
|
|
t_unknown = where(mask_unknown[idx])[0]
|
|
t_known = where(1 - mask_unknown[idx])[0]
|
|
ns = len(t_unknown) # number of missing data in the interval
|
|
|
|
num_restored = 0 # number of previously simulated points
|
|
x2 = x.copy()
|
|
|
|
while ns > 0:
|
|
Soo, So1, S11 = self._split_cov(Sigma, t_known, t_unknown)
|
|
if issparse(Soo):
|
|
So1 = So1.todense()
|
|
S11 = S11.todense()
|
|
S1o_Sooinv = spsolve(Soo + Soo.T, 2 * So1).T
|
|
else:
|
|
Sooinv_So1, _res, _rank, _s = lstsq(Soo + Soo.T, 2 * So1,
|
|
cond=1e-4)
|
|
S1o_Sooinv = Sooinv_So1.T
|
|
Sigma1o = S11 - S1o_Sooinv.dot(So1)
|
|
if (diag(Sigma1o) < 0).any():
|
|
raise ValueError('Failed to converge to a solution')
|
|
|
|
ix = slice((num_restored), (num_restored + ns))
|
|
# standard deviation of the expected surface
|
|
mu1o_std[ix] = np.maximum(mu1o_std[ix], sqrt(diag(Sigma1o)))
|
|
|
|
# expected surface conditioned on the closest known
|
|
# observations from x
|
|
mu1o[ix] = S1o_Sooinv.dot(x2[idx[t_known]])
|
|
# sample conditioned on the known observations from x
|
|
mu1os = S1o_Sooinv.dot(x[idx[t_known]])
|
|
sample[ix] = rndnormnd(mu1os, Sigma1o, cases=1)
|
|
if idx[-1] == num_x - 1:
|
|
ns = 0 # no more points to simulate
|
|
else:
|
|
x2[idx[t_unknown]] = mu1o[ix] # expected surface
|
|
x[idx[t_unknown]] = sample[ix] # sampled surface
|
|
# removing indices to data which has been simulated
|
|
mask_unknown[idx[:-overlap]] = False
|
|
# data we want to simulate once more
|
|
nw = sum(mask_unknown[idx[-overlap:]] is True)
|
|
num_restored += ns - nw # update # points simulated so far
|
|
|
|
idx = self._update_window(idx, i_unknown, num_x, num_acf,
|
|
overlap, nw, num_restored)
|
|
|
|
# find new interval with missing data
|
|
t_unknown = flatnonzero(mask_unknown[idx])
|
|
t_known = flatnonzero(1 - mask_unknown[idx])
|
|
ns = len(t_unknown) # # missing data in the interval
|
|
return sample, mu1o, mu1o_std
|
|
|
|
|
|
def sptoeplitz(x):
|
|
k = flatnonzero(x)
|
|
n = len(x)
|
|
spdiags = sparse.dia_matrix
|
|
data = x[k].reshape(-1, 1).repeat(n, axis=-1)
|
|
offsets = k
|
|
y = spdiags((data, offsets), shape=(n, n))
|
|
if k[0] == 0:
|
|
offsets = k[1::]
|
|
data = data[1::, :]
|
|
t = y + spdiags((data, -offsets), shape=(n, n))
|
|
return t.tocsr()
|
|
|
|
|
|
def _test_covdata():
|
|
import wafo.data
|
|
x = wafo.data.sea()
|
|
ts = wafo.objects.mat2timeseries(x)
|
|
rf = ts.tocovdata(lag=150)
|
|
rf.plot()
|
|
|
|
|
|
def main():
|
|
import wafo.spectrum.models as sm
|
|
import matplotlib
|
|
matplotlib.interactive(True)
|
|
Sj = sm.Jonswap()
|
|
S = Sj.tospecdata() # Make spec
|
|
S.plot()
|
|
R = S.tocovdata(rate=3)
|
|
R.plot()
|
|
x = R.sim(ns=1024 * 4)
|
|
inds = np.hstack((21 + np.arange(20),
|
|
1000 + np.arange(20),
|
|
1024 * 4 - 21 + np.arange(20)))
|
|
sample, mu1o, mu1o_std = R.simcond(x[:, 1], method='approx',
|
|
i_unknown=inds)
|
|
|
|
import matplotlib.pyplot as plt
|
|
# inds = np.atleast_2d(inds).reshape((-1,1))
|
|
plt.plot(x[:, 1], 'k.', label='observed values')
|
|
plt.plot(inds, mu1o, '*', label='mu1o')
|
|
plt.plot(inds, sample.ravel(), 'r+', label='samples')
|
|
plt.plot(inds, mu1o - 2 * mu1o_std, 'r',
|
|
inds, mu1o + 2 * mu1o_std, 'r', label='2 stdev')
|
|
plt.legend()
|
|
plt.show('hold')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
if False: # True: #
|
|
import doctest
|
|
doctest.testmod()
|
|
else:
|
|
main()
|