You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
468 lines
91 KiB
Plaintext
468 lines
91 KiB
Plaintext
{
|
|
"metadata": {
|
|
"name": "WAFO Chapter 4"
|
|
},
|
|
"nbformat": 3,
|
|
"nbformat_minor": 0,
|
|
"worksheets": [
|
|
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Chapter 4 Fatigue load analysis and rain-flow cycles\n",
|
|
"=====================================================\n",
|
|
"\n",
|
|
"Section 4.3.1 Crossing intensity\n",
|
|
"--------------------------------\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"collapsed": false,
|
|
"input": [
|
|
"import wafo.data as wd\n",
|
|
"import wafo.objects as wo\n",
|
|
"\n",
|
|
"printing=0\n",
|
|
"xx_sea = wd.sea() \n",
|
|
"ts = wo.mat2timeseries(xx_sea)\n",
|
|
"tp = ts.turning_points()\n",
|
|
"mM = tp.cycle_pairs(kind='min2max')\n",
|
|
"lc = mM.level_crossings(intensity=True)\n",
|
|
"T_sea = ts.args[-1]-ts.args[0]\n",
|
|
"\n",
|
|
"subplot(1,2,1)\n",
|
|
"lc.plot()\n",
|
|
"subplot(1,2,2)\n",
|
|
"lc.setplotter(plotmethod='step')\n",
|
|
"lc.plot()\n",
|
|
"show() \n",
|
|
" \n",
|
|
" \n",
|
|
"m_sea = ts.data.mean() \n",
|
|
"f0_sea = interp(m_sea, lc.args,lc.data)\n",
|
|
"extr_sea = len(tp.data)/(2*T_sea)\n",
|
|
"alfa_sea = f0_sea/extr_sea\n",
|
|
"print('alfa = %g ' % alfa_sea )"
|
|
],
|
|
"language": "python",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"output_type": "display_data",
|
|
"png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEVCAYAAADzUNLBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcVPX6B/DPQQEXQAdFZFNURFxBRS2NxFxySVPLQssS\nl1xSU7O0ul2wxbRbv9K01BLLDU1btEQ0FdwVTcxuKKIXFBFNAQVBWYbn98eRiWV2ZuacmXnerxcv\nnTNneWZ4hu+c7yoQEYExxhjTwUHqABhjjFkHLjAYY4zphQsMxhhjeuECgzHGmF64wGCMMaYXLjAY\nY4zphQuMWpowYQLeffddqcOo4erVq3B1dQX3mmbG4txm1dlcgeHv74/9+/db7HqCIEAQBItdT18t\nWrRAQUGBLGMzVHh4ONauXSt1GJLj3BZxbkvH5goMKZK8tt90ysrKTBSJbdL1+7SX949z2/ZYW27b\nXIGhCRFhyZIlCAgIQNOmTfH8888jLy8PADBkyBCsXLmyyv7BwcH4+eefAQAXLlzAwIED0aRJEwQF\nBWHbtm16X/frr79Ghw4d4Obmho4dO+Ls2bMAxG+LH3/8Mbp06QJXV1colUrs3LkTHTt2hEKhQL9+\n/XDhwgXVeZYuXQpfX1+4ubkhKCgIBw4cAAAkJSUhNDQUjRo1QvPmzfH6668DADIyMuDg4IDy8nIA\n4jeZf//733jsscfg5uaGJ598Ejk5Oarzr1+/Hi1btkTTpk3xwQcfaP02GxcXh44dO8LNzQ2+vr74\n9NNPAQCJiYnw9fXFRx99BA8PD7Rq1QqbN29WHVdcXIz58+ejZcuWaN68OaZPn44HDx6ont+xYwdC\nQkLQqFEjBAQEYM+ePXjnnXdw+PBhzJw5E66urpg9ezYAwMHBAV9++SXatm2Ldu3a4cqVK1Veb8Vr\nrvj29u2336JPnz6YN28eFAoFAgICcOzYMaxbtw4tWrSAp6cn1q9fr/fvVU44tzm3LZbbZGP8/f1p\n//79NbZ//vnn9Oijj1JWVhaVlJTQ1KlTaezYsUREtH79eurTp49q37/++osaN25MJSUldO/ePfL1\n9aVvv/2WlEolJScnU9OmTSklJYWIiCZMmED/+te/1Mby/fffk4+PD50+fZqIiC5dukRXrlwhIqKW\nLVtS165d6dq1a/TgwQNKTU2lhg0b0r59+6isrIw+/vhjCggIoJKSErpw4QL5+flRdnY2ERFduXKF\nLl++TEREjzzyCG3cuJGIiAoLC+nEiRNERJSenk6CIJBSqSQior59+1JAQAClpaXR/fv3KTw8nBYu\nXKh6vS4uLnT06FEqKSmh+fPnk6Ojo9r3kYioefPmdOTIESIiunPnDp05c4aIiBISEqhu3br0+uuv\nU0lJCR08eJAaNmxIqampREQ0Z84cevrppykvL48KCgpo+PDh9NZbbxER0cmTJ6lRo0a0b98+IiLK\nysqiCxcuEBFReHg4rV27tkoMgiDQoEGDKC8vjx48eFDj9VY/bt26dVS3bl369ttvqby8nP71r3+R\nj48PzZw5k0pKSmjv3r3k6upKhYWFal+zHHBuc25XkCq37abAaN++fZXt169fJ0dHR1IqlZSfn08N\nGzakq1evEhHR22+/TZMmTSIioi1btlBYWFiVc73yyiu0aNEiItL+oRo0aBAtX75cY5zr1q1TPX7v\nvffo+eefVz0uLy8nHx8fOnjwIKWlpVGzZs1o3759VFJSUuU8jz/+OEVFRdGtW7eqbK+eZOHh4fTh\nhx+qnv/yyy9p8ODBRES0aNEiGjdunOq5oqIicnJy0vihatGiBa1evZru3r1bZXvFh6qoqEi17bnn\nnqP333+fysvLqWHDhqo/BkREx44do1atWhGR+J7OmzdP7fXCw8Ppm2++qbJNEARKSEjQ+Horjqv8\noWrbtq3quXPnzpEgCPT333+rtjVp0oT++OMPtTHIAee2iHNbuty2myqpjIwMjBo1CgqFAgqFAh06\ndEDdunVx8+ZNuLq6YtiwYYiNjQUAbNmyBS+88AIA4MqVKzh58qTqOIVCgc2bN+PmzZs6r3nt2jW0\nadNG4/N+fn6q/2dnZ6NFixaqx4IgwM/PD1lZWQgICMDnn3+O6OhoeHp6YuzYscjOzgYArF27Fhcv\nXkT79u3Rs2dP7Nq1S+P1mjdvrvp//fr1ce/ePQDA9evX4evrW+W5Jk2aaDzPDz/8gLi4OPj7+yM8\nPBwnTpxQPadQKFC/fn3V45YtWyI7Oxu3b99GUVERunfvrnofhwwZgtu3b+v1Xqmr6638/unD09Oz\nymsEAA8PjyrbKt4Ta8K5zbltqdy2mwKjRYsWiI+PR15enuqnqKgIXl5eAICxY8ciNjYWx48fx4MH\nD9CvXz/VcX379q1yXEFBQY16YXX8/Pxw6dIljc9XThRvb29cuXJF9ZiIkJmZCR8fH1V8hw8fxpUr\nVyAIAhYsWAAACAgIwObNm3Hr1i0sWLAAzz77LO7fv2/Qe+Pt7Y1r166pHt+/f79KHXB1oaGh+Pnn\nn3Hr1i2MHDkSzz33nOq5ive1wpUrV+Dt7Y2mTZuifv36SElJUb2Pd+7cQX5+PgDt75WmhsHK2xs2\nbAgAVa5948YNbS/bZnBua8a5bVo2WWCUlJTgwYMHqp+ysjJMmzYNb7/9Nq5evQoAuHXrFnbu3Kk6\nZujQobhy5QqioqIQERGh2v7UU0/h4sWL2LhxI0pLS1FaWopTp06pGu1ISy+SyZMn45NPPsGZM2dA\nRLh06ZLq+tU999xz2LVrFw4cOIDS0lJ8+umnqFevHnr37o2LFy/iwIEDKC4uhrOzM+rVq4c6deoA\nADZu3Ihbt24BABo1agRBEODgoP7XqinWZ555Br/88guOHz+OkpISREdHa9y3tLQUmzZtwt27d1Gn\nTh24urqqYqkQFRWF0tJSHD58GLt27cKYMWMgCAKmTJmCOXPmqOLNysrC3r17AQCTJk3CunXrcODA\nAZSXlyMrKwupqakAxG9Ply9f1vg+A+K3KR8fH2zYsAFKpRIxMTE6j7FGnNuc21Lmtk0WGEOHDkWD\nBg1UP++99x5ee+01jBgxAoMGDYKbmxseffRRJCUlqY5xcnLC6NGjsX//fowbN0613cXFBXv37sWW\nLVvg4+MDLy8vvPXWWygpKQGgvavjs88+i3feeQfjxo2Dm5sbRo8ereq9Ul1gYCA2btyIWbNmwcPD\nA7t27cIvv/yCunXrori4GG+99RY8PDzg5eWF27dv46OPPgIA7NmzB506dYKrqyvmzp2LLVu2wNnZ\nWRVbZZUfV467Y8eO+OKLLxAREQFvb2+4urqiWbNmqvNUt3HjRrRq1QqNGjXCmjVrsGnTJtVzzZs3\nh0KhgLe3N8aPH4/Vq1cjMDAQgNgbJiAgAI888ggaNWqEgQMH4uLFiwCAHj16YN26dZg7dy4aN26M\n8PBw1R+g1157Ddu3b4e7uzvmzJmjNiZA7LXzn//8B02bNkVKSgr69Omj9vWqez+sBec257aUuS2Q\ntq8REiosLMSMGTPg7OyM8PDwKonOzOvevXtQKBS4dOkSWrZsqfdxiYmJGD9+PDIzM80YHWPG49yu\nHdneYfz444947rnnsGbNmiq318w8fvnlFxQVFaGwsBDz589Hly5dDPpA2Zv4+HgEBQWhbdu2WLp0\naY3nN23ahODgYHTp0gV9+vTBuXPnVM/5+/ujS5cu6Nq1K3r27GnJsO0S57bpWLTAmDhxIjw9PdG5\nc+cq29V9+LKyslQ9BarXIzLT27lzJ3x8fODj44PLly9jy5YtRp3HGqt5DKVUKjFz5kzEx8cjJSUF\nsbGxOH/+fJV9WrdujUOHDuHcuXN499138corr6ieEwQBiYmJSE5OrlJ1xMyDc9t0LFoldfjwYbi4\nuOCll17Cn3/+CUD88LVr1w779u2Dj48PevTogdjYWPz+++9QKBQYNmyYqpcHY3Jw/PhxLFq0CPHx\n8QCAJUuWAAAWLlyodv+8vDx07txZ1VunVatWOH36tNbunYzJkUXvMMLCwqBQKKpsS0pKQkBAAPz9\n/eHo6IiIiAjs2LEDo0ePxg8//IAZM2ZgxIgRlgyTMa0q3/0CgK+vL7KysjTuv3btWgwdOlT1WBAE\nDBgwAKGhofj666/NGitjplRX6gDUffhOnjyJBg0aICYmRuuxfIvILKH6TbgheZeQkICYmBgcPXpU\nte3o0aPw8vLCrVu3MHDgQAQFBSEsLMzoazBmDGMqlyRv9K7tB4PE6U1q/RMVFWWyc5n6fHwu6c6l\njo+PT5XeMpmZmVVGE1c4d+4cpkyZgp07d1a5s64YUOfh4YFRo0ZpbMeQ4/vB57KNcxlL8gJD3w+f\nJtHR0UhMTDRDZMyeJSYmIjo6Wu1zoaGhSEtLQ0ZGBkpKSrB169Ya1aZXr17F6NGjsXHjRgQEBKi2\nFxUVoaCgAIDYdXzv3r01OoEwJleSV0lV/vB5e3tj69atBjVwa/pQM1Yb4eHhCA8Px6JFi2o8V7du\nXaxYsQJPPvkklEolJk2ahPbt22P16tUAgKlTp+K9995DXl4epk+fDgBwdHREUlISbty4gdGjRwMQ\n1zp44YUXMGjQIMu9MMZqgywoIiKCvLy8yMnJiXx9fSkmJoaIiOLi4igwMJDatGlDixcv1vt8ACgq\nKqrKzI7GMsU5zHU+Ppflz5WQkEBRUVFk4Y+IiimvK7f3ls8l/bmMzS/ZjvTWhyAItaqPY0wXqXKM\nc5uZk7H5JXkbBmOMMetg9QUGN3ozc9DW6M2YveIqKca04CopZou4SooxxphZWX2BwVVSzBy4Soqx\nmrhKijEtuEqK2SKukmKMMWZWVl9gcJUUMweukmKsJq6SYkwLrpJitoirpBhjjJkVFxiMMcb0YvUF\nBrdhMHPgNgzGauI2DMa04DYMZou4DYMxxphZcYHBGGNML1xgMMYY0wsXGIwx65WYCKxZI3UUdsPq\nCwzuJcXMgXtJyZ8gAHjuOaB1a/H/zOy4lxRjWnAvKXlydyfk5QlQuJQgt8AJggDw26U/Y/OLCwzG\ntOACQ57U3VHw26U/7lbLGLMPxcWq/yoU/2wWhIcFyccfA7/+avm47AAXGIwxq+Le3BGK+vdBBOTm\nincWlQsOeHkBK1dKFp8t4yopG/T3TcIPK2/g4F9Nce68I5ydgdatgT/+AAYMANyOxKGDy1UMG6yE\nx8g+QHCw+nt8xlVSMqSpvcLdHcjLAxQKQi6aAOfOAb6+lg/QCnAbBgPl5mF55Bm8t6s7nnA6imHz\ng+DSpQ3c3ICsLODBAyAnByhMv4kzSWU4ltoEXsiGm1AA39ZO+Pj7Vgjs7Cz1y5AVLjDkR1cDtyAA\nNHUa0KIF8PbblgvMinCBYc/y85ETtRxTVobgsksX/LzqJlqNCdV511BcDFxMJTz4Mw2H1l3CsotD\ncOqUAE9PC8VtBbjAkBd3d/Hf3FzN+wgCQIkHgblzgTNnLBOYlTE2v+qaIRaLio6ORnh4OMLDw6UO\nRRK3bgH/N/cu1myfgwkvK7FxWSM0aNBCr2OdnYHOXQSgSyB6vBCIBx8CHToAs2cDCxYA9eqZOXgZ\nS0xM5PE9MpSXp7s3lEIBuI96HLkN/gZu3waaNrVMcHaA7zCsVEkJ8MUXwEcfAWPGAAsXAi1b1v68\nGRnA/PlAcrI4JmraK+Vo2cp++0bwHYa86DveQhAAKikFHB3NH5QV4m61doJILChatAD27weOHgW+\n+so0hQUA+PsD27eLsy08KChB78Bb+Ou706Y5OWO1sXmz3rsqFIC7pyPc3f+pxmK1x3cYVub91/Ow\nOU6BjRuB7t3Nf72v5/yFpSsaYNu/zqFr9NPmv6DM8B2GfLg73wPq1kVuoX51pRUFhT7VWPaGG71t\nHBEw4bFLSDxRD0l/NYRnkEL3QSay4eNsvPF2XTzR6Rbe29YeAW3tpwsuFxgyQQTBQQBduSreXhuA\npw2piaukbFhpKfDlC0dwIklAyukiixYWADD+TS+k/VWKDtn78UhwEfbts+jlGQNSU8V/DSwsmGlx\ngSFzRMBLj/0P3213QewPTmjYNVCSOFzbeeNff43F6hnnMG4ccOWKJGEwe3XokHHHVZpGhNWe1Xer\ntXWvPXUZ6cl3kHDSFQ27+kkbTNOmeOaTpvifJ/DCC0BcHODmJm1IzE4kJxt3nFIp/nv/PlC/vuni\nsVOyvcNIT0/H5MmTMWbMGKlDkcyBA8Cuc37Ys6+uZHcW6rz+OtCpE9CxI3DwoNTRMLvw5ZfGHdeg\nARR17sLdk78bm4JsC4xWrVrhm2++kToMSS1aBCz6yAmNHg+WOpQqHByAVavE7r2TJgFlZVJHxGxe\nLeY6y53xLvIKeDyGKZi9wJg4cSI8PT3RuXPnKtvj4+MRFBSEtm3bYunSpeYOw+ocOiTO/xQRIXUk\nmo0cCfg2LsB/ou9JHYrF6crfTZs2ITg4GF26dEGfPn1w7tw5vY9lJvboo1JHYDvIzA4dOkRnzpyh\nTp06qbaVlZVRmzZtKD09nUpKSig4OJhSUlJo/fr1NGfOHMrKylLt++yzz2o8twXCl0R2NlGLFkTb\nt0sdiW6Zr35ETR3z6PBBpdShmIW6HNOUv5UdO3aM7ty5Q0REu3fvpl69eul9rKbr2juj35KMDPHY\n8nJThmPVjM0vs99hhIWFQaGo2g00KSkJAQEB8Pf3h6OjIyIiIrBjxw6MHz8en332Gby9vZGbm4tp\n06bh7Nmz9vUt7PJlrFpFGDIEeOYZqYPRzffz+Vgf+CHC+jpg61apo7EMTflb2aOPPopGjRoBAHr1\n6oVr167pfSyryd292poXhqjoinv/vsnisVeStARlZWXBz++fHj++vr44efJklX3c3d2xatUqneeK\njo5W/d/qJyG8cAFHHpmPL4QdOHq8jtTR6KduXQzZMweng5/EkGm/IDTUCW3aSB2U8fSZdFCf/K1s\n7dq1GDp0qMHH2lRuG6usDLhwAXl5nYwffFfR/tGggcnCsjammkxTkgJDMOFiPZU/VFatrAxZY+fj\nWfoeG2PrIChI6oAM4OOD7jGvYu6Ez/H2m3Ox9QfrbWCs/od50aJFNfYxJH8TEhIQExODo0ePGnys\nzeR2bZw/L86CifNSR2LV9MlrfUjSS8rHxweZmZmqx5mZmfA1cmWs6Oho25iGeulSvH1zNqbMro8h\nQ6QOxggjRmD2uBwkJhDS0qQOpvYSExM1/sHWN3/PnTuHKVOmYOfOnapqWVPmvl04dQoIDZU6ClbB\nxG0paqWnp1dp9C4tLaXWrVtTeno6FRcXa2z408VC4ZtfcjLlNGlLjdyUdOuW1MHUzqxZRM89R1RU\nJHUkpqEux/TJ3ytXrlCbNm3o+PHjBh+r6bp2afp0os8/N77B+yF+O6syNr/M/jZGRESQl5cXOTk5\nka+vL8XExBARUVxcHAUGBlKbNm1o8eLFRp3bZj5UY8bQZ+NO0rhxUgdSe3l5RIMHE73xhtSRmIam\nHFOXv6tWraJVq1YREdGkSZPI3d2dQkJCKCQkhHr06KH1WH2va3dCQ0nhWkIKRe1Oo1BQrc9hS4zN\nL6ufrTYqKsrqGwQLckrQrrMjfv5ZQM+eUkdTe9nZQLduwM8/A716SR2NcSoaCRctWsSz1UqluBhQ\nKCDcLzLJbLOCANDRY0Dv3rU/mZXj6c2t2EcfASdPin9gbcW2beIo8NWrgbFjpY7GeDy9uYSuXwf+\n9S8I62JMV2C8uQCwp276Gtjt9ObW3uhdUCDm7yefSB2JaY0ZrcRv8/dgwQJCaanU0RhOW6M3sxBv\nbyAmxrTnPHPGtOezM3yHIbHvvgN+/BGwubFb5eXAY4+hf942PBnpgzfflDog4/AdhvRMtQCSIADk\n3gS4fbtWc1PZAru9w7BKpaXAvXsoLwc++wyYPFnqgMzAwQFYuRJrbo3GurVKvP661AExe6dQENzz\nLomNbMwoVl9gWGWV1Jo1wJQp+OUXoG5d4KmnpA7ITLp2RZvhHXBi6PvYsMH4NXCkwFVS8lCrKUGq\nyc0VkEcK4M8/TXNCO8RVUpZ29y4QGAjs3Ytn3w/GoEHAK69IHZQZZWUBXbrgu7dTEbOzqdWtn8FV\nUtIy9XrcggBQegbg72+6k1ohrpKyFosXA089hT8dgnH4sLynLzcJHx9g5kyMyVmFlBTgq6+kDohZ\nhbQ0cQUxc7DzwqI2+A7Dkq5cEQco/PknRkzzxhNPAHPmSB2UBZSUAI6OSLskoHdvcWnXHj2kDko/\nfIchkf/7PyA9HcKKL0x/h2HHb2sFu73DsKo2jA8+AKZNw6qd3vjjD2DaNKkDshAnJ0AQ0LateIcx\ncCCQlyd1UNpxG4bE/vwT7jH/MVn7BTMNvsOwpIQE3G0VglbdFDhyBOjQQeqApPHaa2JHle+/lzoS\n3fgOQyLdu0M487vJ7wbc3cV/c3NNe15rwyO9rcTKlcBvv9nWqG5D3b8PBAQAv/4KdO0qdTTacYEh\nAaUS7nXvAgoFcnNNP16Cq6XMUGDk6lEEOzg4oHHjxgZf1FSs7UNVVga0bAn88ovYlGG3iLD8CwHf\nfw/s3Wv5dW0MyW0uMCSQmgohqJ3Z/qgLAkBfrbKjOuGajM0vjQsoeXl5wdvbW+vBZWVlVeb2l0J0\ndLTVTD44eTLQqZOdFxb//S/w5puY9tMu7NwpICJCnHfK2dlyIeiT24WFhZgxY4aFImJVODmZ/xp7\n99p1gWEsjXcYISEhOHv2rNaD9dnHnKzpW1haGvDII2JHKRcXqaORkFIpNt6sXo2b7cMREQF07gws\nW2a52RoMyW2+w5CGOauN3BspgXsFyFVKVzsiNZNXST148AD16tXTerA++5iTVXyotm0DBgzAgDEK\nPPoo8P77UgckA2vXii3ee/YgO1ssSDdsAB5/3DKXNyS3ucCQhlnbGUpKIDg7gR4UW/bWVkZM3q22\n4gN1/Phx5Ofnq7bn5+erFq2XsrCwCpmZwNSpiP3BEWlpwLvvSh2QTIwfD6SkAL//Di8vYOZMYNMm\ny12ec9vOVVR52cJawhams5dUSEgIzpw5AwcHsWxRKpUIDQ1FcnKyRQLURvbfwubNAwQBL978FP36\nietDsIc++ww4dgzYtg3/+5+40NK5c4CXl+VC0Ce3+Q5DGubuyeTuVAA4OSP3ngXaS2TIrAP3Kj5Q\nAFCnTh0olUqDL2R3cnOBb7/FpVHz8csvQN++UgckM1OmiN/0ysrQurU4mC8uzvJhcG7LjyknHNQk\n9/zfyCu0z8KiNnQWGK1atcLy5ctRWlqKkpISLFu2DK1bt7ZEbHqR7UjvlSuBkSPxza9emDhRHHfA\nKnFxEeuh6ood9fr2hcUnJtSW2zzSWyJ//IG8PAsMrGvTxswXsE06q6Ru3ryJ2bNnIyEhAQDQv39/\nLFu2DM2aNbNIgNrI9ra9pARo0QJHPjmBUXP9cfq0OP6CaXbhgniXcemS5doh9cltrpKyLPeGDwCl\nErkPGpr9WvY8gI9HestNZibmfeaHJk2Ad96ROhj5IxJn7i0oAHbtks+CaFxgWJYgAPR/nwFz51rm\nWvb3FgMwYxtGamoq+vfvj44dOwIAzp07hw8++MDwCO3MAw8/bNsGDBkidSTWQRDEGqoLF4A//rDM\nNTm3ZapdO6kjYBroLDCmTJmCxYsXw+lhV7TOnTsjNjbW7IFZu507xby361HdhlAqUbeu2JZx/Lhl\nLsm5LVNcYMiWzgKjqKgIvXr1Uj0WBAGOjo5mDcoW/PorMGaM1FFYiXPngD59ACIMHCi+d5bAuS0z\nRUXiv5Zc4GjlSstdywboLDA8PDxw6dIl1ePt27fDy5Kd5a0QEbB/P9C/v9SRWIlOncQFMg4dwogR\nYpWUJdb/5tyWmYo69Tp1LHdNS9V/2grS4dKlS/TEE09Q/fr1ycvLi3r37k3p6em6DrMIABQVFUUJ\nCQlShyLaupXoyhW6cIHIz4+ovFzqgKzIihVEo0YREdF33xENHWr+S2rL7YSEBIqKiiI9PiJmIdV1\npWbJl61wLSFF3buWu6CMGJtfeveSunfvHogIrq6u5iy/DCKrniT37ol9Z5OT8eWvLXDqFLBundRB\nWZF794AWLYCzZ3HDqQU6dBAXWbJEF1ttuc29pCzLoj2XbtyA4NXcLntKma2X1Oeff478/Hw0bNgQ\nc+bMQbdu3bBnzx6jgrRpmzaJLbYtWuDAAeCJJ6QOyMq4uADjxgFr16J5cyAsDPjiC/NeknNbXiwx\nwrsKT0/x39u3LXhR66azwIiJiYGbmxv27t2L3NxcrF+/HgsXLrREbNZlzRpg2jSUlwMJCVxgGGXq\nVHGVKQCvvgr88IN5L8e5LS8WGeFdWcVgnwsXLHhR66ZxAaUKFbctu3btwvjx49GpUyezB2V1fv9d\nzPQBA/DHH4CHB+DjI3VQVqhzZ/EHQHg4kJoKXL5svlkcOLcZALGHHtOLzjuM7t27Y9CgQYiLi8Pg\nwYORn59fZcI2BvHuYsoUwMEBcXHAoEFSB2T9nJyAt98GXnzxn96Wpsa5LSM3b0pyWYUCcG8ik2kF\nrIDGRu/S0lI4OjqivLwcycnJaN26NRQKBXJycpCVlYUuXbpYOtYaZNMwmJ0N1KsHKBTo2hVYvlys\ng2e1U14OREYC166J66Cbau1vQ3KbG70tJDERQr9wSRqg7XGKEJPPJRUaGgofHx8MGTIEgwcPhr8l\nB9PoSW4fqtu3xeqT27cBHv9lGkolMHGiWGjs2iWWy7VlSG5zgWEhq1dDmDaVCwwLMXkvqdOnT+Pz\nzz8HEWHOnDkIDQ3F3LlzsXfvXhQXF9cqWFuVkCDeWXBhYTp16gAxMWLB8fPPpjkn57YMpaZKHQHT\ng97jMEpKSnD48GHEx8fj4MGD8PDwwK5du8wa3I4dO7Br1y7k5+dj0qRJGDhwYJXn5fYtbNo0IDBQ\nXGiP1dL8+WI35eHDAYhjWjZtAn77zfQz2WrLbb7DsAx3pwLA2Rm5BZZf1MjdXXyfc3Ptpy3D6PzS\nNbLv888/r7Hts88+o2vXrhk1UtAYeXl5NGnSpBrb9Qjfotq2JTp7VuoobMTatUQjR6oelpQQBQWJ\nm01Fn9zs5SrlAAAgAElEQVTWlGO7d++mdu3aUUBAAC1ZsqTG8+fPn6dHHnmEnJ2d6ZNPPqnyXMuW\nLalz584UEhJCPXr0UHt+ueW2uQFEdP68NBcfNsyiI8zlwNj80nlUSEhIjW3BwcEGXSQyMpKaNWtG\nnTp1qrJd14euwuuvv07Jyck1tkv6oSouJtq3T/Xw6lWipk2JlErpQrIp+flEjRoR/f23atNffxF5\nehKdOmWaS+iT2+pyrKysjNq0aUPp6elUUlJCwcHBlJKSUmWfv//+m06dOkXvvPNOjQLD39+fcnJy\ntMZmlwVGSYk0F3/tNS4w9KRxHEZsbCw2b96M9PR0DH9YLQAABQUFaNKkiUF3MZGRkZg1axZeeukl\n1TalUomZM2di37598PHxQY8ePTBixAicPn0aZ86cwRtvvAEvLy8sXLgQQ4YMQUhIiEHXNLv4eOCT\nT1QzDO7fD/TrB3CvTBNxdRWrozZvBl57DQDQoYO4GNX77wM7dhh/6trmdlJSEgICAlSN5REREdix\nYwfat2+v2sfDw0NrtS3ZUXWT3qRq/AsMhMK5EO7uDS07cNAKaSwwevfuDS8vL9y6dQvz589XJbir\nqyuCg4MNukhYWBgyMjKqbNP0oVu4cCHGjx8PAFi+fDn279+P/Px8XLp0CVOnTjXouma1fj1QqQDc\ns4dnpzW5CRPEtoyHBQYATJ4MfPQRcPYsYOx3iNrmdlZWFvz8/FSPfX19cfLkSb2vLwgCBgwYgDp1\n6mDq1KmYMmWK4S+CmU5gIHIffQpCYoLUkciexgKjZcuWaNmyJU6cOGGWC+vzoZs9ezZmz56t9TzR\n0dGq/4eHhyM8PNyUYaqXmwvs2wesXQsAuHsXiIvjqfVNrl8/8Vvn338DD9fZrl8fePNNsQz57Tdx\ngJ+htOV2YmIiEhMTtR4v1LLV/ejRo6oCa+DAgQgKCkKYmoE7kuS2PQoMBC5elDoKs9Inr/Whc2qQ\nH374AQsXLsTNmzdV38QEQUB+fn6tLlzbD12Fyh8qi/n+e2DwYKBRIwBAUpL4bdfd3fKh2DQHB/HN\nrWbWLLEL89SpYpdbY1NJn9xetGhRjeN8fHyQmZmpepyZmQlfX1+9r1ux5oaHhwdGjRqFpKQknQUG\nMyNfX5uvS67+hUNdXutD57v05ptvYufOncjPz0dBQQEKCgpqXVgAtf/QVYiOjjZJyWmQatVR8fHA\n449bNgR7VqeO2LRx8KA4jZextOV2YmKixj/YoaGhSEtLQ0ZGBkpKSrB161aMGDFC7b7V2yqKiopQ\nUFAAACgsLMTevXvR+eH8WUwiDg5Apb9FTAtdreK9e/c2qjW9uvT09Cq9pEpLS6l169aUnp5OxcXF\nanua6KJH+KZXXk4UE0NUWqra1KoV0Z9/Wj4UexcZSfTVV8Yfr09ua8qxuLg4CgwMpDZt2tDixYuJ\niGjVqlW0atUqIiLKzs4mX19fcnNzo8aNG5Ofnx8VFBTQ5cuXKTg4mIKDg6ljx46qY/W9ri1S1LlD\nisbSrzZmR2+5+RZQeu2113Djxg2MHDkSTg8rjAVBwOjRo/UulMaOHYuDBw8iJycHzZo1w3vvvYfI\nyEjs3r0bc+bMgVKpxKRJk/DWW28ZVNgJgoCoqChJ63fv3hVnpr1717IrSzJx5Pfs2eIdXocOhh+v\nLbcr6nwXLVrEA/fM6fZtCB5NQeVk+hGZBqqoUraHnlImn0uqwoQJE1QXqGydDJaTk8OHatcu4OOP\nxeoRZnlffQVs2AAcO2b4sfrkNo/0NrOjRyE81kc2cznZy7xSZisw5EwOH6oZM4CAAJ4OxOx27BDH\nZlRbmaq0FGjeXOxmW6nTnclwgWFmMTEQJk2UzR9pLjC009lLKjIyssaFAHG1MjmIjo6WtEoqJQV4\n5hlJLm1fcnKA776rUWA4OgKjRom9paKiDDulttw2VTdEpp37qxFQ1L8PoL60gRA9nAAxSNo4ZE7n\nHcb27dtVH6T79+/jp59+gre3N74w94LLerDot7CyMnGBhkod/4nEZYGTk3mFPbO7cwdo2RK4elXV\nnblCejoQGgqcO2fY70Gf3OY7DPMSBIC2/yCPb11Nm0LIuc13GNqOM7RKqry8HH369MHx48cNvpip\nWfRDtXs38Pnn4pDuh1JSgCFDgIwMydvr7MOoUcDTT4sjwKt5+WWgVy+xitBY6nKbCwzzEgSACotM\ntzpWbfTpA+HYUS4wtDB4tMrFixdx69Ytgy9kLhYbh7FlCzBsWJVNa9YAY8ZwYWExY8eKAzDUePll\nccqQ2qz0WTm3tY3DYCYmh8ICEEd8M6103mG4uLiobtsFQYCnpyeWLFmCZ2RwC2mxb2EPHgDe3sB/\n/yv+C3EFuOBg4K+/xEZXZgFFReL7n5oq1gVWExUFnDolTtOiD31ym+8wzEtWjcwffQTh7bfkE48Z\nma3R+969e0YFZFP27AG6dFEVFoD4bXbSJC4sLKpBA7FE8PBQ+/Q774hfEo8fBx59VPfpOLdZFe3a\nSR2B7OksMABx5btDhw5BEAT07du3ypTQUrNIL6ktW4CICNXD8nJx9bfz5813SaZB27Yan3JyElc9\n3LxZvwID0Jzb3EvKDnXoAIXTPbi7u9jF4D1j6KySWrhwIU6dOoUXXngBRIQtW7YgNDQUH330kaVi\n1Mhit+1jxwLLl6u+2f71FzByJJCWZv5LM8McOiTOiK5mzsIa9MltrpIyo/JyCHUcZFcFJKtqMjMx\nWy+pzp074+zZs6jzcN4LpVKJkJAQ/Pnnn8ZFakJSfah27hQbvH/91eKXZjoUForlem4uUK+e9n31\nyW0uMMzH3TEfqF8fufkSLZykARcYmunsJSUIAu7cuaN6fOfOHZNNTW6tsrOBhzNUM5lp2BAICgIO\nHNC9L+e2tPLK3JCbUotubczidLZhvPXWW+jWrRv69esHIsLBgwexZMkSS8QmW1xgyMCVK+IAvsaN\nazz14YfAK68AZ85obB8HwLktqbt3ATTiEa9WRq+Be9evX8epU6cgCAJ69uyJ5jLpGiTVbLUTJwI9\ne4oNrEwi48YBYWHA9Olqn16wQBwUHhur/TSacptnqzWzpCQIvXrKsuqHq6S0HKerwPjpp5/Qr18/\nNH74Te7OnTtITEzEyJEjjYvUhKT4UBUXiwt0JSUBrVpZ9NKssh9/BL78UlwqV43MTLFQz87WfAp9\ncpvbMMxkwwYIL42X3x/mggK4+9QD6jradE8ps7VhREdHqz5QANC4cWP7GAGrVIq3ECUlVTb//LO4\nHCsXFhIbPFgck3H7ttqnfX3FBvCcHM2nsNvcloNr16SOQL3bt5HbuA3y8qQORJ50FhjqSiGlUmmW\nYGTlyBHxNqLSZIMA8M03wOTJEsXE/tGgATBokDjtuRqCAPTvD2zbpvkUdpvbcmDgYmkW06IFIKOp\nj+RGZ4HRvXt3zJs3D5cvX8alS5cwd+5cdO/e3RKxSevHH4Fqqwr+73/iugsyqI1jgPj7+eknjU+/\n9po4X2R5ufrn7Ta3ZcDdHVAopI5CjTp1gNatpY5CtnQWGF988QUcHR3x/PPPIyIiAvXq1cPKlSst\nEZtezDL5IJHaAiM2VhzD5+xs2ssxIw0dCnTtqvHpvn3F39Xhw+qf15bbPPmgeeXlyXgp1MBAKBqW\nqJZsZf/gFffUOXUKGD9enPujUr/8l18GwsOBauvuMBl75RWgWzfje7Rxo7d5yLon0sKFgIsLhHf/\nJd8Ya8nkjd76fLuy2W9gFXcX1QZxXb0qVnEy6+HvLy6wVJld5zbTLTycx4dooPEOw9fXF/PmzdNa\nCq1ZswapqalmC04Xs30Ly88Xe0c1bVplc0CAuI6SlvnvmMxs2QJs3y7+VDAkt/kOwwxyciA0bSL7\nb++yvguqJZNPbz558mQUFBRoPfiVV14x+IJWwc2txqbycrEnoK+vBPEwo3XrJtYwVGbXuS0H//43\nAPm0gzL9cRuGnm7cEJfE+Ptvi1yOmQgR0KSJ2BylZs0lnfgOwwwGDICwf5/sv73zHUZNBi/Raq+4\n/ULGcnLEtb7VfAAEQRzxfeKEBHEx9SSsxma1wwWGnvbsAbiLvky5uwPnzgEaptx/+mlg2TLb/bZo\nVQoKtA+/Z7Kms8DIkfkv16TjMG7eBNQs21lcLE5bNGuWaS7DTEwQxFJBw6jvKVOAO3fEVRIr05bb\nPA7DTC5etI5eI3wXpJbOAuORRx7BmDFjEBcXJ8s61YolWk0iKkpcGamarVuBzp2BTp1McxlmBsOH\nA7t2qX2qbl1g1SrgjTdQZY4gbbkdHh7OBYY55OWJswzL3cWLUkcgSzobvcvLy7Fv3z7ExMTg1KlT\neO655xAZGYnAwEBLxaiRSRsGicQpAX79FejYscrmbt2AxYuBIUNMcylmBsXFQLNmwKVLGhfBmDFD\n/H1+9ZX4WJ/c5kZv85B9g3JaGtyDPIBGjeU7Ir0WjM4vMsD+/fvJy8uL3Nzc6PHHH6ejR48acrjJ\nGRi+dhcvEnl7E5WXV9l87BhRYCCRUmm6SzEzGTmSaOtWjU/n5RE1b070++81n9OU2ybNMQNIdV1L\nUCjEH1krLSVydiZb/TUYm186V9y7ffs2Nm3ahPXr18PT0xMrVqzA8OHD8ccff+DZZ59FRkaG4aWU\nHO3dK85+Wm10d2ws8MILgAN3D5C/9esBFxeNTzduLA4BePNN4LffgJwcO8ltmcnLk/ndBSDWY7Zq\nBVyQOhB50Vlg9O7dGy+++CJ27NgB30qj1kJDQzHNlpac27NHXMWtEqVSnB7b1HMbMjNxddW5y+TJ\n4gy2e/cCs2bZSW4z47RrxwVGdbpuQbaqucVXt00KeoSvv8mTif7+u8qmhASikBDTXYLJw48/EgUH\nE8XG6s5tk+aYAaS6riVYzUv7+WfridVAxuaXzkbvbt264cyZM1W2de3aFcnJyWYrxPRl7obBadPE\nyeuqTy3BrBsR8NhjQFZWN2RkaM9tbvQ2oawsoLAQQrtA+VdJPST7xnkjmXwuqd27dyMuLg7Xrl3D\n7NmzVScvKCiAo6Oj8ZFaibIycdLakyeljoSZWnz8bnh5xeHEiWt49dXZcHCwr9yWzPffw/2tV+S5\ncJIGCoU4LtQWe0oZQ2OB4e3tje7du2PHjh3o3r27qsBwc3PDZ599ZvbALly4gGXLliEnJwdPPvkk\nJk2aZPZrVpaWBjRqxGt3W6Xz54HmzTUu6ebt7Y2nnuqOnTt3oGnT7mjVyrK5bbcuXEBecUPQA6kD\n0V9ubo1+MPZNV51VSUmJUXVdpqJUKmnMmDFqn9MjfKPt2EE0dKjZTs/MKSKC6Ouvde727LMltHGj\n9n005dju3bupXbt2FBAQQEuWLKnx/Pnz5+mRRx4hZ2dn+uSTTww6Vtt1rdrjj1tlm4A1xqyLsfml\nsbPomDFjAIhtGJ07d67y06VLF70LpIkTJ8LT0xOdO3eusj0+Ph5BQUFo27Ytli5dqvbYX375BcOG\nDUNERITe1zOVtDTrmMGAqTF0KBAXp/Hpitw+eLAb5s0zPLeVSiVmzpyJ+Ph4pKSkIDY2FufPn6+y\nT5MmTfDFF19g/vz5Bh9rsy5wlyNrp7FKatmyZQDEP9q1ERkZiVmzZuGll15Sbav40Ozbtw8+Pj7o\n0aMHRowYgdOnT+PMmTN444034O3tjeHDh2P48OF4+umnMbra+toms3KluMJWpdHdgFhgVCvjmLUY\nPFic+KukBHByqvF0RW4vWPALDh4Eli837PRJSUkICAiAv78/ACAiIgI7duxA+/btVft4eHjAw8MD\nu6pNV6LPsTYpLw8oKpI6CsPt3AmF6xC4uztyOwa0zCXl7e0NQEx8Pz8/+Pv7o7i4GOfOnYOPAcsX\nhoWFQVGtLrnyh8bR0VH1oRk/fjw+++wzeHt74+DBg3jttdcwdepU9OvXz8iXpwOROOeHmj8qfIdh\nxTw8gKAg4MgRtU9X5HbXrh64ft3w3M7KyoKfn5/qsa+vL7KysvQKrTbHWrX8fGDCBKmjMNzFi8id\n+EaVOcjsmc6Be2FhYThy5Ajy8vLw5JNPokePHti6dSs2VZ/60wDqPjQnq3VH6tu3L/r27avzXJUn\niAsPDzdsIsK//gKcncW1V6vhAsPKVVRLPfGExl3mzAnDlStHcO3aP7m9fPlyPPbYY1pPLdSiFdSQ\nY2uV23LTsiXwxRfACqkDMVC7dsD+/VJHUWuJiYkmmdVbZ4FBRGjQoAHWrl2LGTNm4M0330RwcHCt\nLlqbD1x1tZpRVMN0IEVFwK1bvGCSVXvmGeDwYa271KlDcHBogA0bquZ25ZxatGhRjeN8fHyQmZmp\nepyZmVllpLg2hhzLs+XKQFCQTbS9VP/CoS6v9aHXDEnHjx/Hpk2bMGzYMADiLJ+1UZsPXHW1Wg9j\nzx7gySdrbF6wQOxOW6eOcadlMtCxozjyUgcvr+PYuLFmbmtbDyM0NBRpaWnIyMhASUkJtm7dihEj\nRqjdl6oNjjLkWCYDrVuL6+Qwka5uVImJiTR8+HBV979Lly7RrFmzDOqKlZ6eTp06dVI9Li0tpdat\nW1N6ejoVFxdTcHAwpaSkGHROolp2PSwqInJxEacwraS4mKhuXaKDB40/NbMOiYmJ1KzZcHr5Zc25\nrSnH4uLiKDAwkNq0aUOLFy8mIqJVq1bRqlWriIgoOzubfH19yc3NjRo3bkx+fn5UUFCg8djqapXb\nMmUVs9SqExxMCrdS64xdA2Pzy+xZGRERQV5eXuTk5ES+vr4UExNDRPp9aHQBQFFRUZSQkGD4wSUl\nRMeP19h86xZRkyZGhcOs0KhRRNu21dyekJBAUVFRPJeUCVntS9qzh+j6deuNXw1j80vnXFKpqan4\n5JNPkJGRgbKyMgBiG8SBAwfMeuejD3PMt3P5stiscfmySU/LZCg1NRXDhn2C+vUz0LSp+tzmuaRM\n4Pp14MwZCMOfsup5mWxpXimTzyVVYcyYMZg+fTomT56MOjKs1K9YotVUPUjy8wE3N5OcisncmDFj\n4OExHf37T8bIkVVz21S9ShiAQ4eA7dsBPCV1JKyWdN5hdO/eHb///rul4jGIOb6FJSYC0dG8BobN\n+PlncdBYZGSNp7p3744ePX5HcDAwfbr6w/kOwwTefRdwcIDw3iKr/obOdxh69JIaPnw4Vq5ciezs\nbOTm5qp+bBXfYdgYJydxJT41hg8fjtTUlfj7b/vIbcn89VeNmRSYddJ5h+Hv76923ER6errZgtKX\nIAiIiooyvErqwQOgXj21T23YIA7P2LDBNDEyiRUWijPXZmfXWL7V398fd+4IcHAQZyaukJ6erqqS\nWrRoEd9h1Fa7dnC/8RdQp65VT6/Bdxh6FBhyZtSLLi8HfHyAs2cBT88aT69cCaSkiP8yG/HEE8C8\necBTNevQ//1vcbxNVJT6Q7lKqpYePAAUCggP7lv3H9vlyyG8Ntu6X0MlZquSKiwsxPvvv48pU6YA\nANLS0vDrr78aHqFcJCcDjRurLSwA4O7dqt82mQ0YOBDYt6/G5sLCQhw79j5++slGcluOHjwQS2Vr\nd++e1BHIgs4CIzIyEk5OTjh27BgAceK2d955x+yBmU3FdCAacBuGDerfX+18QJGRkXB2dkJmpo3k\nthw1bgy89ZbUUdRehw5SRyALOguMy5cvY8GCBXB6OKNrw4YNzR6UIQyeGkRHgcF3GDaoe3dAzTT9\nly9fxpAhC+DgUDO3tU0NwuwQN9oD0KPAcHZ2xv3791WPL1++DGdnZ7MGZYiKcRh6uXcPOH1aXP9C\nA77DsEF16gAP15+ozNnZGYJwHxVTo1XO7fDwcC4w2D9at4YCuXB3t5FGDCPpHLgXHR2NwYMH49q1\naxg3bhyOHj2Kb7/91gKhmcHly8CIEYCWuyS+w7Af0dHRmD17MAoLbSC3mXnVqYPckP4QziZLHYmk\n9Ooldfv2bZw4cQIA0KtXL3h4eJg9MH2YoyfJhAnAjBlAz54mPS2TqdjY29i69QQmT1af29xLqvbc\n3cV/rblLLQDg/HkIHdrbRE8ps3Wr7d+/P/ZXazBUt00KRo/DYAzac5vHYZhAWhoQHw9h9iyb+CML\n2M5YDJPPJXX//n0UFRXh1q1bVUa/5ufny2pJSa5nZnpTKoG7d3G/fn2duV3xJcTYhWYYxCVyT54E\nMEvqSJiJaCwwVq9ejWXLluH69evo3r27arurqytmzpxpkeAYM6lNm4Bdu7D60Uc5ty3hjz+AkBDA\n+NWcZUehEKvYrL56zUg6q6SWL1+O2bNnWyoeg9jEbTuznMxMoFs3cQU1Bwe9cpvbMGohPBx45x0I\ngwbaRDVOBVuoljLr1CDHjh2rsh4GALz00ksGX8zU9H7RZWXAqlXAq6/WWL+b2ZnAQGDbNuDhuvS6\ncpsLDCMRiV/FU1MheDaz+j+wldlzgaGzW+2LL76I//3vfwgJCamyHoYcCgy9JSUB33wDcHUD69sX\nOHgQCA62jdyWq8xMoH59oFkzqSMxraVLASyQOgrJ6Cwwfv/9d6SkpKidsVYO9FpAScfobmZH+vYF\nfvoJmD1ba27zAkq15OoKrF0rdRSm5+UFhdM9uLu72GU7hs6R3p06dUJ2drYlYjGKXiO9ucBgFcLD\nAQcx7bXlNo/0riWFAhgyROooTC84GLlteiIvT+pApKGzDSM8PBxnz55Fz549VdMmCIKAnTt3WiRA\nbfSqh8vLA1q2BP7+W+MaGMw+6ZPb3IZROzYzaK9CSQnQqBHc6xcBEKz2dZmtDcPqv2UdOAD06cOF\nBavB6nPbCuTlWX8DcRVOTkC7dsj95ncIPUKljsbibH8BpdRU4PZtsdBgzEB8h1E7ttCjqIaXXwb6\n94fw8ktW+9pM3q3WxcVFY0O3IAjIz883+GKmZisfKmZZhuQ2Fxi1Y5MFRnEx4Oxs1a+Nl2hlzAy4\nwDDC5s1io8XMmVb9R1UXa35tZluilTGbdOoUcPiw1FHYpv37VT3RmG2x+t+qwSvuMQYAf/0FrFih\n8Wleca8WTp8GevSQOgpmBlwlxexTRgbQqxdw44bW6WK4SspARUWAh4dYJWXl9fy6WHOXYa6SYswQ\n/v7i1BWpqVJHYluSk4EOHQBnZ7i7i+P3bFJpKXL/e93uBvBxgcHsV9++AFdnmtbp00CoOD4hL886\nv33r5fhxYPRo1XTn9oKrpJj9WrdOnDYmNlbjLlwlZaDCQvGnWTObro7CvXuApydw5w4EJ0ere51m\nG+nNmM0aPBho3FjqKGxLw4bij61zcRGrNf/7XwBdpY7GYrhKitkvLy9g1Cipo7BJNt1+UaFHD7EK\nzo5wgcEYMzmbbr+oEBoKnDplV+0Ysi4wCgsL0aNHD+zatUvqUBhjrKrevQEHB+Tmwm56S8m60Tsq\nKgqurq5o3749hg0bVuN5q20YZFaDG70NcP++2FUZ1j1thjGs7fXKdhzGxIkT4enpic6dO1fZHh8f\nj6CgILRt2xZLly6tcdxvv/2GDh06wMPDw9whMmYwXfkLALNnz0bbtm0RHByM5ORk1XZ/f3906dIF\nXbt2Rc+ePS0VsnmVlwN+fsCtW1JHwszI7L2kIiMjMWvWrCrrJCuVSsycORP79u2Dj48PevTogREj\nRuD06dM4c+YM3njjDRw8eBCFhYVISUlB/fr1MXToUNkuE8us3OLFQFAQMHq0Xrtryt/27dur9omL\ni8OlS5eQlpaGkydPYvr06Thx4gQA8dtdYmIi3G2p4vvCBaBRI3GUN7NZZi8wwsLCkJGRUWVbUlIS\nAgIC4O/vDwCIiIjAjh07sHDhQowfPx4A8MEHHwAAvvvuO3h4eHBhwcynfn1xPIaeBYam/K1cYOzc\nuRMvv/wyAKBXr164c+cObt68CU9PTwCwvuomXY4eVa05Yxc9pKqpaPi29YZ+ScZhZGVlwc/PT/XY\n19cXJ0+eVLtvxYdOk8oTxIWHh+te35ux6sLCgLVrAYiTDuqazFKf/FW3T1ZWFjw9PSEIAgYMGIA6\ndepg6tSpmDJlitrrWFVuVyowbG6VPT3k5mqdkkxy+uS1PiQpMEx5t8AzirJaCwkBrl4FcnJq/GFe\ntGhRjd31zV9NdxFHjhyBt7c3bt26hYEDByIoKAhhYWE19rOq3D56FHj9damjkMaePUC7dlAo/GV7\nl6FPXutDkm61Pj4+yMzMVD3OzMyEr6+vUefi6c1ZrdWtCzzyCHDsmGqTtunN9cnf6vtcu3YNPj4+\nAABvb28AgIeHB0aNGoWkpCRTvRJpFBaKo7s7drTL6ij8+COwc6d9dK8lC0hPT6dOnTqpHpeWllLr\n1q0pPT2diouLKTg4mFJSUgw+r4XCZ/Zg7VqinTtrbFaXY/rk765du2jIkCFERHT8+HHq1asXEREV\nFhZSfn4+ERHdu3ePevfuTXv27NHrutbASsOune++I3rmGSKyntdvbH6ZvUpq7NixOHjwIHJycuDn\n54f33nsPkZGRWLFiBZ588kkolUpMmjSpSoOhIaKjo+Vfv8vkb+LEKg+11fnWrVtXbf6uXr0aADB1\n6lQMHToUcXFxCAgIQMOGDbFu3ToAwI0bNzD6YeN6WVkZXnjhBQwaNMh8r4uZ3xNPAPPmAeXlUCgc\nZFstZQqyHrini1UObmJWhQfuGcbaBrCZTLt2wJYtQNeuVvEeyHbgHmOM2bz+/YEDB6SOwuysfnpz\nrpJi5mCqboj2xC4bvCtMmiSukWHjuEqKMS24SkqH3buB7t1tf8EkA1jDWt/G5hcXGIxpwQWGFkTi\n/FEJCUDbtlxgVCL398Ju2zB4HAYzB23jMNhDqamAgwMQEGDf1VF2hO8wGNOC7zC0+L//EycdXLNG\n9t+oLU3u1VJ2e4fBGJPIr78Cw4dLHYUs2eqob77DYEwLvsPQ4M4doEUL4MYNuPs2ACDfb9MW9fHH\nQLNmwIQJsr7LsNs7DG7DYObAbRg6KJXAypVAgwb2sX63vvz8gO3bAfzzntjSsid8h8GYFnyHoZ2c\nvzC9/nUAAA2OSURBVEVLIi8PaNkSuHEDaCDeecmxfcdu7zAYY9Lhu4tqFApxXMq+fVJHYhZcYDDG\nmCmNHg1s2yZ1FGZh9QUGt2Ewc+A2DGa0554DjhwR23lsDLdhMKYFt2FUQ1RlLVI51s/LQlmZuDAX\n5NnOw20YjDHz+/FHIDISgJ1PNqhL3X/mdbWlMRlcYDDG9BcTA/TrJ8tvzcz8uEqKMS24SqqSrCyg\nc2fg2jUIDRtwVZQB5FbAGptfVr8eBmPMQtavB8aMUY0vYPrLza3S9GO1rL5KintJMXPgXlLVKJXA\n11+LCwUx/e3YAZw9K3UUJsNVUoxpwVVSD2VkAO++C2zYILvqFVn77DPg1Clg82ZZvW+8gBJjZsAF\nRk3cldYA+flAq1ZAcjLQooVs3jvuVssYMzvuSmsgNzdgwgRx7RCI7501T0bIdxiMacF3GFXJ5Ruy\nVcnOBjp1Av74A/D1lcV7yHcYjDEmR15eYmeBNWsAWPddBt9hMKaFXd9hEAH371fpRiuHb8dWqagI\ncHYG6tQBIP37aLd3GNytlpkDd6sF8P33wPPPqx5y+0UtNGigKiwA673L4DsMxrSw2zuMggKgfXtg\n61agT5+HMfHdhSlJ2c2Wu9UyZgZ2W2BMmQKUlwNr11aKiQsMU5Oq0OCpQRhjprFtG5CYCJw5o9rE\n1VEmlpcHNG6M3FwB7u7i+yuHAX26WH0bBmPMhPLzgZkzgdhYwNUVgPwmzrMJzz8PfPklgH/eV0GQ\nf7sGV0kxpoVdVkmlpQFt21aKhauiTO7yZeDxx4Fly4Bnn1VttlThzG0YjJmBXRYYlfDdhRmdPQsM\nGgRs3gwMGKDabIn33G671TLGzIMLCzMLCQF++AEYOxb4+WfVZjlXUXGBwZg9+/tvjU/l5XFhYXZh\nYcDu3cD161U25+b+Uw0op0JDtgVGYmIiwsLCMH36dBw8eFDqcBizLTduAJMnA0OGiN1nK3F3F7/d\ncq8oCwkNBWbMUPtU5bsNOdxxyLbAcHBwgKurK4qLi+Hr62v265l6tLgpz8fnku5cmsTHxyMoKAht\n27bF0qVL1e4ze/ZstG3bFsHBwUhOTjboWFOq8n5kZQFvvw107Ag0agTs3w84iH8GKgoKQPx2q+7u\nQq6/J5s8V3k5QKS620hIEM8lZcFh9gJj4sSJ8PT0ROfOnats1/WhCQsLQ1xcHJYsWYKoqChzh8kF\nBp9Lb0qlEjNnzkR8fDxSUlIQGxuL8+fPV9knLi4Oly5dQlpaGtasWYPp06frfaypqd6PDz4Q1+TO\nzwdOnwY+/RRo3BjAP3+ANBUUNc5lyrj4XOrFxYmj7d99Fzh8GIn79kleVWX2AiMyMhLx8fFVtmn6\n0GzYsAFz587F9evXITz8qtO4cWMUFxebO0zG9JaUlISAgAD4+/vD0dERERER2LFjR5V9du7ciZdf\nfhkA0KtXL9y5cwc3btzQ61iD3L0r/vGPjQUWLQJefBH49lv1+06YAFy7BqxYAffurVTVHBV3Fdxe\nITPDhgHffQcUFwPz5gEffwz07g1s3lyjqspSdx1mH+kdFhaGjIyMKtsqf2gAqD40CxcuxPjx4wEA\nP/30E/bs2YM7d+5g1qxZ5g6TMb1lZWXBz89P9djX1xcnT57UuU9WVhauX7+u81i9ffUV3Gc8jzyE\nAgj9Z/smAJFVd120CAD+qdpVKHhshewJAtCrl/gDiFWJgwYBTZsCqFnAu9cvgiA0qLJNUecucr/+\nEYislhDGIgtIT0+nTp06qR5v27aNJk+erHq8YcMGmjlzpsHnBcA//GP2n+q2b9+uM3+feuopOnLk\niOpx//796fTp03ody7nNP5b4MYYkc0lVVDfVFvFXJCYBHx8fZGZmqh5nZmbW6JhRfZ9r167B19cX\npaWlOo8FOLeZPEnSS0qfDxxjchUaGoq0tDRkZGSgpKQEW7duxYgRI6rsM2LECKxfvx4AcOLECTRu\n3Bienp56HcuYXElyh1H5Q+Pt7Y2tW7ciNjZWilAYM1jdunWxYsUKPPnkk1AqlZg0aRLat2+P1atX\nAwCmTp2KoUOHIi4uDgEBAWjYsCHWrVun9VjGrIJRFVkGiIiIIC8vL3JyciJfX1+KiYkhIqK4uDgK\nDAykNm3a0OLFi/U61/z58ykoKIi6dOlCo0aNojt37qjdb/fu3dSuXTsKCAigJUuWqN3n+++/pw4d\nOpCDgwP9/vvvGq/ZsmVL6ty5M4WEhFCPHj1qdS594srJyaEBAwZQ27ZtaeDAgZSXl2dwXPpcZ9as\nWRQQEEBdunShM2fOGB1zQkICubm5UUhICIWEhND777+v8VyRkZHUrFmzKu1Zxsal61z6xnX16lUK\nDw+nDh06UMeOHWnZsmW1istYnNv6xSXH3JZjXhOZJ7ct0uhtKnv37iWlUklERAsWLKAFCxbU2Kes\nrIzatGlD6enpVFJSQsHBwZSSklJjv/Pnz1NqaiqFh4dr/SD4+/tTTk6O1rj0OZe+cb3xxhu0dOlS\nIiJasmSJ2teoLS59rrNr1y4aMmQIERGdOHGCevXqZXTMCQkJNHz4cLXHV3fo0CE6c+aMxg+DvnHp\ncy5948rOzqbk5GQiIiooKKDAwECj36/a4NzWHZdcc1uOeU1kntyW7UhvdQYOHAiHh6NSe/XqhWvX\nrtXYR99+7kFBQQgMDNTruqSjAVKfc+kbV+X++y+//DJ+rjQpmT5xGTtG4ObNm0bHrOv9qRAWFgaF\nlvkm9I1Ln3PpG1fz5s0REhICAHBxcUH79u1xvdq8PobEZSzObd1xyTW35ZjXgHly26oKjMpiYmIw\ndOjQGts19X83liAIGDBgAEJDQ/H1118bfR5947p58yY8PT0BAJ6enhp/eZri0uc66vZR9wdKn3MJ\ngoBjx44hODgYQ4cORUpKitp49aFvXPowJq6MjAwkJyejV0W/dzPEpQ/ObdvKbanzGjBdbstuidaB\nAwfixo0bNbYvXrwYw4cPBwB8+OGHcHJywrhx42rsV7nL7sCBA3HhwgUUFRVVGaJf+Vy6HD16FF5e\nXggPD8fs2bOxZMkSNGjwz+AYfc+lT1wffvhhjWM0dUGuiOvWrVsYOHAggoKCEBYWpneX5erfUtQd\np8+5unXrhszMTDRo0AC7d+/GyJEjcfHiRb1iMDYufRga17179/Dss89i2bJlcHFxMUtcnNtVj7Gn\n3JYqrwHT5rbsCozffvtN6/Pffvst4uLisH//frXPV+6y+9tvv+Gjjz6Cg4MDFixYYFQ8Xl5eAMQ5\nYRYtWgQXFxe8/vrrBp9H37g8PT1x48YNNG/eHNnZ2WjWrJnWuDw8PDBq1CgkJSUhLCzM6DECPj4+\nWmPWdC7Xh8t4AsCQIUMwY8YM5Obmwt2IeQr0jUsfhsRVWlqKZ555Bi+++CJGjhxptrg4t+0zt6XK\na8D0uW1VVVLx8fH4z3/+gx07dqBevXpq9zGmn7umOsGioiIUFBQAAAoLC7F3794akyjqey594xox\nYgS+++47AMB3332n9pesLa7ajBEwJuabN2+qXnNSUhKIyKjCwpC49KFvXESESZMmoUOHDpgzZ47Z\n49KEc1t3XNaa21LkNWCm3NaruV0mAgICqEWLFqouZdOnTycioqysLBo6dKhqP3267P7444/k6+tL\n9erVI09PTxo8eHCNc12+fJmCg4MpODiYOnbsWKtz6RtXTk4O9e/fv0bXQ0PiUnedVatW0apVq1T7\nvPrqq9SmTRvq0qWL1p40us61YsUK6tixIwUHB9Ojjz5Kx48f13iuii7Wjo6O5OvrS2vXrjU6Ll3n\n0jeuw4cPkyAIFBwcrMqruLg4o+MyFue29ea2HPOayDy5bdVrejPGGLMcq6qSYowxJh0uMBhjjOmF\nCwzGGGN64QKDMcaYXrjAsDLqBt6YSnR0ND799FOznZ8xbTi35Y8LDCtjqsWnLH1uxnTh3JY/LjBs\nwOXLlzFkyBCEhobi8ccfR2pqKu7evataMx0QB0G1aNECSqVS7f7VLV++HB07dkRwcDDGjh1rwVfD\n2D84t2VG6ygNJjsuLi41tj3xxBOUlpZGROIUxU888QQRET399NOUkJBARERbtmyhKVOmaN0/Ojqa\nPv30UyIi8vb2/v927h5VdSgKw/Ab7IMOwMJeggj2wT5gIwHBGYj29oKlE7BUFKwMTsBCO0WdgROQ\nYLQIaG5xLjk/1yK3UCLneyDN3ovAhhU+QsKKwjCMoiiKfN9/3oFE/lJvp1/qZknJ/wmCgPV6Tb1e\nj9fCMATAdV2m0ym2bTOZTGi1WgRBwGq1elj/lWVZNBoNarXawxEOIs+m3k4fBcabu9/vZLNZttvt\nP3uO49DtdjmdTmw2G6rVKufzmVwu97AePucFLRYLlsslnufR6/U4HA5kMpmnnkXkK/V2+ugbxpsz\nTZNCocBsNgM+Hordbgd8/HVSqVRot9s4joNhGA/r9/v9t3tGUcTxeMS2bfr9Pr7vc7lcXnsw+fXU\n2+mjwHgz1+uVfD4fX4PBgNFoxHA4pFQqUSwW8Twvrnddl/F4jOu68drP+vl8Hu8ZhsHtdqPZbGJZ\nFuVymU6ng2maLz2n/D7q7fTT8EEREUlEbxgiIpKIAkNERBJRYIiISCIKDBERSUSBISIiiSgwREQk\nkT+tW9R/eaN3FgAAAABJRU5ErkJggg==\n"
|
|
},
|
|
{
|
|
"output_type": "stream",
|
|
"stream": "stdout",
|
|
"text": [
|
|
"alfa = 0.491212 \n"
|
|
]
|
|
}
|
|
],
|
|
"prompt_number": 1
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Section 4.3.2 Extraction of rainflow cycles\n",
|
|
"-------------------------------------------\n",
|
|
"Min-max and rainflow cycle plots\n",
|
|
"---------------------------------"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"collapsed": false,
|
|
"input": [
|
|
"mM_rfc = tp.cycle_pairs(h=0.3)\n",
|
|
" \n",
|
|
"clf()\n",
|
|
"subplot(122), \n",
|
|
"mM.plot() \n",
|
|
"title('min-max cycle pairs')\n",
|
|
"subplot(121), \n",
|
|
"mM_rfc.plot()\n",
|
|
"title('Rainflow filtered cycles')\n",
|
|
"show()"
|
|
],
|
|
"language": "python",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"output_type": "display_data",
|
|
"png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEVCAYAAAAVeRmFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXl8VNXd/z+TjRCykn0PJiRASEIUTFGWqAQlIEQtLaIS\nXMC2ivXXuuDTurRWxOXx1VZ9Sm0taHlQQauggg+oxAUIWEFRUZElEJYAhkR2QuD7++P0zD1z5947\nM3furDnv12teyczcuffcme+933O+q42ICBKJRCKRaBAR6AFIJBKJJHiRSkIikUgkukglIZFIJBJd\npJKQSCQSiS5SSUgkEolEF6kkJBKJRKKLVBIC//u//4vLL7/c7e1/+9vfIj09HTk5Odi1axciIiJw\n7tw5n43vwIEDGDVqFBITE3HXXXfh0UcfxYwZMwAALS0tPj++EU1NTcjPz/fb8YqKivDee+/57Xjh\nyO7du5GQkICeHgW/YMECjBw50u/H/fnPf44//OEPfj+up0QFegBWU1RUhIMHDyIyMhJ9+vRBXV0d\nnn32WSQmJrr87HXXXYfrrrvOrePs3r0bTz31FFpbW5GamoqWlhYvR+6a5557DhkZGThy5IjLbWtr\na3HDDTfg5ptv9vm4AoHNZoPNZgv0MEKagoICHD16NNDD6LH85S9/CfQQ3CLsVhI2mw1vvfUWjh49\nis8//xxffPGFT7T17t27kZqaitTUVMv3rceuXbswcOBAt7b19gYaqBWJRCIBuru7Az0EO2GnJEQy\nMzMxduxYfPXVV/bX5s6di5KSEiQmJqK8vBxvvPGG/T31sjMiIgJ//etfUVpaipSUFNx+++0AgHff\nfRdjx47Fvn37kJCQgJtuusnpprxv3z5MnDgRqamp6N+/P/7+978DAE6dOoXevXvj8OHDAIBHHnkE\n0dHROHbsGADg/vvvx//7f//P6VymT5+OF198EY8//jgSExPx3nvv4aGHHsINN9zgsB0R4Te/+Q0+\n+ugj3H777UhISMAdd9wBAPjmm29QV1eH1NRUDBgwAEuWLHHY/89//nPU19cjPj4eTU1N2LdvH665\n5hpkZGTgvPPOw9NPP23f/uTJk5g+fTr69u2L8vJyfPLJJ4a/xVdffWU/dlZWFubOnYu2tjb06dPH\n/l0AwMaNG5GRkYGzZ88CAP72t79h0KBB9t/rs88+c9o3Edl/17S0NPz0pz9FR0eH/fu+/vrrkZaW\nhpSUFFx44YU4ePCg4VhDmaKiIjz55JOorKxEQkICbr75Zhw4cADjxo1DUlIS6urq0NnZCcDZRFlb\nW4sHHngAI0aMQGJiIi6//HK0t7frHqu2thb3338/Lr74YiQkJGDixIn4/vvvcd111yEpKQkXXngh\ndu3aZd/+l7/8JQoKCpCUlIShQ4fi448/tr83fvx43HXXXfbnU6ZM0V0Fnzt3DnPmzLFfx0OHDsWe\nPXtw2223OewDACZOnIg//vGPAIDW1lZcffXVyMjIQFpaGmbNmqW5f6PrROs7uO+++1BTU4OkpCQ0\nNDTYZQ8AJk+ejOzsbCQnJ2P06NHYsmWL/b3p06fj/vvvB8DMtXl5eXj88ceRnZ2Nm2++Ge3t7Zgw\nYQJSUlKQmpqKUaNGBcY0SGFGUVERvfvuu0RE1NraShUVFfS73/3O/v6SJUto//79RET0yiuvUJ8+\nfaitrY2IiObPn08jRoywb2uz2ejKK6+kH374gXbv3k3p6en0zjvvEBFRU1MT5eXl2bfduXMn2Ww2\nOnv2LBERjRw5km677TY6ffo0ffbZZ5Senk7vv/8+ERGNGjWKXnvtNSIiqquro5KSElqxYoX9c2+8\n8YbmuU2fPp3uv/9++/OHHnqIrr/+es3j19bW0vPPP2/f9tixY5SXl0cLFiygs2fP0qZNmygtLY22\nbNlCRESNjY2UlJREa9euJSKiEydO0Pnnn08PP/wwnTlzhnbs2EHnnXce/d///R8REd177700atQo\n6ujooNbWViovL6f8/HzNcR85coSysrLoqaeeotOnT9PRo0dpw4YNRERUX19Pf/nLX+zb3nnnnXTH\nHXcQEdHixYspNzeX/v3vfxMR0bZt22jXrl1ExH7n9957j4iI/vjHP9Lw4cNp79691NXVRbfeeitd\ne+21REQ0b948uvLKK+nkyZN07tw52rhxIx05ckRznOFAUVERDR8+nA4ePEh79+6ljIwMqq6ups8+\n+4xOnTpFl156qf16UMvM6NGjqaSkhL777js6efIk1dbW0uzZs3WPNXr0aOrfvz/t2LGDfvjhBxo0\naBCVlJTQe++9R93d3TRt2jS68cYb7dsvXLiQDh8+TGfPnqX//u//pqysLDp16hQREbW1tVFGRga9\n//77tHDhQiouLqZjx45pHvfxxx+niooK2rp1KxERbd68mdrb22nDhg2Uk5ND586dIyKiQ4cOUVxc\nHB08eJC6u7upsrKSfvWrX9GJEyfo1KlTtGbNGiJyvO5dXSda30Fubi599dVXdPz4cbrmmmvs1yTf\n97Fjx6irq4vuvPNOGjJkiP098XpevXo1RUVF0ezZs6mrq4tOnjxJs2fPpp/97GfU3d1N3d3d9PHH\nH+v+Fr4k7JREYWEhxcfHU0JCAtlsNmpoaLBfBFoMGTKEli5dSkTaSoILEhHRT37yE5o7dy4RsR9V\nT0ns3r2bIiMjHYT8vvvuo+nTpxMR0f3330933HEHdXd3U1ZWFv35z3+m2bNn08mTJ6l37950+PBh\nzbFOnz6dfvvb39qfP/jgg4ZK4u9//7t925dffplGjhzpsL+ZM2fabxiNjY3U2Nhof6+5uZkKCgoc\ntp8zZ479ohcVBhHRc8895/B9iCxatIjOP/98zfdefvlluvjii4mI7N/HJ598QkREY8eOpT//+c+a\nnxOVxMCBA+3/ExHt27ePoqOjqbu7m/7xj3/QRRddRJs3b9bcT7hRVFREixYtsj+/5ppr6Be/+IX9\n+dNPP00NDQ1EpC0zjzzyiH3b//mf/6ErrrhC91i1tbU0Z84c+/Nf//rXVF9fb3/+5ptvOtwU1aSk\npDj8Lq+99hrl5eVRWlqaw3WnpqysjJYtW6b53sCBA2nVqlX2cx0/fjwREa1du5bS09M17wXide/q\nOlFTW1tL9913n/35li1bKCYmxq6oRDo6Oshms9knKeL1vHr1aoqJiaHTp0/bt3/ggQdo0qRJtG3b\nNu0vwk+EnbnJZrNh6dKlOHLkCJqamvD+++/j3//+t/39F198EdXV1UhJSUFKSgq+/PJLwyV1VlaW\n/f+4uDi7WciIffv2oW/fvujTp4/9tYKCAuzduxcAMHr0aDQ1NWHjxo2oqKjAmDFj8MEHH2D9+vUo\nKSlBSkqKmVN3QjSB7dq1C+vXr7efd0pKChYtWoQDBw7Yt83Ly3PYft++fQ7bP/roo3ZTzb59+xyi\nmQoKCnTH0draivPOO0/zvUmTJmHLli1oaWnBqlWr7KYIANizZw+Ki4tdnmdLSwuuuuoq+zgHDRqE\nqKgoHDx4EDfccAMuv/xyTJkyBbm5ubj33nuDyt7rCzIzM+3/9+7d2+F5bGysoQyL8t67d2/7tj/7\n2c+QkJCAhIQEzJ07V/NYsbGxyMjI0D3Wk08+iUGDBiE5ORkpKSn44Ycf8P3339vfnzBhAs6ePYsB\nAwbgoosu0h1ja2urrlxMmzYNCxcuBAAsXLjQbo5tbW1FYWEhIiKMb3murhMt1NfBmTNn8P333+Ps\n2bOYPXs2SkpKkJSUhH79+gGAwzmLpKenIyYmxv787rvvRklJCcaOHYvi4mI89thjhmP3FWGnJERG\njRqFWbNm4d577wXABGDmzJl49tlncfjwYXR0dGDw4MEe2fnccQjn5OTg8OHDDhfI7t277Tfh4cOH\n49tvv8Xrr7+O2tpaDBw4ELt378by5ctRW1tryVjU7xUUFGD06NHo6OiwP44ePYpnn31W8zMFBQXo\n16+fw/ZHjhzBW2+9BQDIzs7G7t27Hc5Pj4KCAuzYsUPzvdjYWEyePBkLFy7EwoULMW3aNPt7+fn5\n2LZtm+5+xf2/8847DmM9ceIEsrOzERUVhQceeABfffUV1q5di7feegsvvviiy32GE57Itx7z5s3D\n0aNHcfToUcyePVtzGyN5/Oijj/DEE09gyZIl6OzsREdHB5KSkhzG9pvf/AaDBg3C/v378fLLL+vu\ny0gurr/+eixduhSff/45vvnmGzQ0NNg/s3v3bruvSw93rhM16usgOjoaaWlpWLRoEZYtW4b33nsP\nP/zwA3bu3AnA8fcQvzP19xcfH48nn3wS27dvx7Jly/DUU0/h/fffNxy/LwhrJQEAd955JzZs2ID1\n69fj+PHjsNlsSEtLw7lz5zB//nx8+eWXbu+LmHnO5Xb5+fm46KKLcN999+H06dPYvHkz/vGPf+D6\n668HwFYkF1xwAZ599lmMHj0aAHDRRRdh3rx59ud6xzd6LpKZmYnt27fbn0+YMAFbt27FwoULcebM\nGZw5cwaffPIJvvnmG819XXjhhUhISMDjjz+OkydP4uzZs/jyyy/tq7Kf/OQnePTRR9HZ2Yk9e/Y4\nOLXVTJgwAfv378ef/vQnnD59GkePHsWGDRvs70+bNg3z58/HsmXLHBzxt9xyC5588kls3LgRRIRt\n27ZpKqOf/exn+K//+i/7e4cOHcKyZcsAMIfgF198gbNnzyIhIQHR0dGIjIzUHWtPx1OFIm5v9Nmj\nR48iKioKaWlp6Orqwu9//3uHUO4PP/wQCxYswD//+U8sWLAAs2bNwr59+zT3dcstt+D+++/Htm3b\nQETYvHmzPfghLy8PQ4cOxbRp0/DjH/8YvXr1AgDU1NQgOzsbs2fPxokTJ3Dq1CmsXbvWad/jx483\nvE60zn/hwoX4+uuvceLECTzwwAOYPHkybDYbjh07hl69eqFv3744fvw4/uu//svps0bf2dtvv20/\nx8TERERGRgZEdsNeSaSlpaGxsRGPPfYYBg0ahF//+tcYPnw4srKy8OWXX2LEiBH2bdWx92rN7s77\nnJdeegktLS3IycnB1Vdfjd///ve49NJL7e+PHj0a3d3duPDCC+3Pjx07hlGjRumei9bx9cbzy1/+\nEq+++ir69u2LO++8E/Hx8Vi5ciVefvll5ObmIjs7G/fddx+6uro09xUREYG33noLn332Gc477zyk\np6dj5syZ9gv7wQcfRGFhIfr164crrrgC06ZN051JxsfHY9WqVXjzzTeRnZ2N0tJSNDU12d+/+OKL\nERERgQsuuMBh6f7jH/8Yv/nNbzB16lQkJibi6quvdogcEc914sSJGDt2LBITEzF8+HC7Empra8Pk\nyZORlJSEQYMG2fNHehLuyoyrbT3dt/j+FVdcgSuuuAKlpaUoKipC79697SbKI0eOoLGxEc8++yyy\ns7MxYsQI3Hzzzbjppps0j/mrX/0KP/nJTzB27FgkJSVhxowZOHXqlP39xsZGfPHFFw6/c0REBN58\n801s27YNBQUFyM/Px+LFi53GnZCQYHidaJ3/DTfcgOnTpyM7OxtdXV3485//DIBNfgoLC5Gbm4vB\ngwdj+PDhHv0W3333Herq6pCQkICLLroIt912m+Ek0lfYyIq1qETiJWPGjMHUqVN1bwwSibt89NFH\nuP766x3Cb33FJZdcghtuuCGs5dZvK4nW1lZccsklKC8vx+DBg+3aVs0dd9yB/v37o6qqCps2bfLX\n8CQB5JNPPsHGjRvx05/+NNBDMYWU7eDhzJkz+OMf/2gvV+MPwn6e7a8wqv3799OmTZuIiOjo0aNU\nWlrqFHv89ttv07hx44iIhWDW1NT4a3iSADFt2jRKSkqiF154IdBDMY2U7eBgy5Yt1KdPH7r44ovp\n6NGjfjmmOh8pHPFb7aasrCx7eF18fDwGDhyIffv2OZSZWLZsGRobGwEwR1NnZycOHDjgEGYnCS9e\neOGFQA/Ba6RsBwcDBw50K0TdSlavXu3X4wWCgDiuW1pasGnTJtTU1Di8vnfvXgfHZV5eHvbs2ePv\n4UkkppGyLQk3/F4F9tixY/jxj3+MP/3pT4iPj3d6n1T2Pa3oCln9U+Jr1HLoDt7KtpRria8xI9d+\nXUmcOXMG11xzDa6//np7kotIbm4uWltb7c/37NmD3NxczX3Rf2KM/fl48MEHe9Rxe+o5B1K2Q+m7\n9MV+Q2msobZfs/hNSRARbr75ZgwaNAh33nmn5jYTJ060Z8M2NzcjOTlZ2mwlQY+UbUk44zdz05o1\na7Bw4UJUVlaiuroaADBnzhx7luytt96K+vp6LF++HCUlJejTpw/mz5/vr+FJJKaRsi0JZ/ymJEaM\nGOFWI5tnnnnGD6Mxhyd1lcLhuIE8diDP2VOCXbZ99V36Yr+hNNZQ3K8ZQjLj2mazeWVjk0iMCJR8\nSbmW+BKz8hX2tZskEkl4M3MmUFsL1NcD/2m6J7EQqSQkEklIs3Ur8MEHwIoVTGFIrEUqCYlEEtLE\nxbG/w4YBzz0X2LGEI9InITFk5kw2U4uLAxYtApKTAz0i3yN9EsGLljx2drLXn3uuZ8inWczKl1QS\nEkNqa9lSHgAmTwb+U4I/rJFKwj+YmYD0RHm0Cum4lvgEuZSX+AozvgQpj/5HKgmJIYsWsRnbypVy\nKS+xFn7DT0gAOjrci0yS8uh/pLlJIlEhzU3+obMTKC0FDh1iz6X5yLdIc1MPR8aKS0KN5GRg6FD2\nvzQfBS9SSYQJ3sSKSwUjCRTSfBT8+L2fhMQ3eOPQ4woGYApDLvkl/iI5WcpbsCNXEmGCNzMyMw5E\niSQQyFWv/5GOa4l0IKqQjuvgReZJmEc6riWmkQ5ESagg8yT8j1xJSADI0gYiciURvEg5NY8syyGR\nWIRUEpJwRJqbJBJJ0CEdzaGPVBISicRnBKrXg1RO1iGVhEQi8Rm+cDS7owBkIyLrkEpCYgly5taz\n0fv9fZFR7Y4CkFFQ1iGVhMQS5MytZ6P3+/OMaisjkbgCSEsD9u3TnpjIch/WIZWExBLkzK1n48/f\nnyuAsjJgzRrtiYkvlFNPRSoJiSX05JnbTTfdhMzMTFRUVGi+39TUhKSkJFRXV6O6uhp/+MMf/DxC\n3+PP358rgMRE9lxOTHyLzJOQSFR4Kl8fffQR4uPjMW3aNHzxxRdO7zc1NeGpp57CsmXLLD1uOOBN\nD/Wenljn6Xcn8yQkkgAxcuRIpKSkGG7T027+7uKNLyuUTEq+COzwlx9QlgoPY7yZpUmsw2azYe3a\ntaiqqkJubi6efPJJDBo0SHPbhx56yP5/bW0tamtr/TPIAGHkywgn+fVFOX5XfqCmpiY0NTV5fyAK\nQUJ02H5n9GgigD0mTw70aEIHM/K1c+dOGjx4sOZ7R44coePHjxMR0fLly6l///6WHTfU6ehgstnR\n4fxeOMnvuHHsPIYN0z5XMxh9d1qYlS9pbgpTZs4EuHm8utq/jj2ZM+FIQkIC4v4z7Rs3bhzOnDmD\nw4cPB3hU7uPL39PIZBROEXO+cOz7y9wmlUSYsnUrwO9DhYX+XarLnAlHDhw4YPdJbNiwAUSEvn37\nBnhU7hOo39OKG2uwTFhCyX+iRvokwhRxFjZ/fuCOHeozQHe49tpr8cEHH+D7779Hfn4+fve73+HM\nmTMAgFtvvRWvvvoq/vKXvyAqKgpxcXF4+eWXAzxiz9BKXvOHj8CK1qayNa/3yBDYICZUwwNDPTRR\nlgp3hP+e+/ax5DXAuStcsDqZ6+vZCmjYMN/mcATr+YvIfhJhSKi3agyFC0cLqSS0MbrhBqus+mvC\nEqznLyLzJMKQUDfbSN9EeGHkI3BHVl35B3zhP/CXLyDUr1Uj5EoiiAl1s42/lvpWI1cSnuOOrGrN\ntsXV5pEj+uasYCcUrlVpbpIEHaFw4WghlYRvKCgAWluBpCTg889Z1J2oOLKygLa20JtUhAohYW6S\nhdCMsWq5LcP+JK4IhIwUFLC/P/wA3H03+1800zQ399wikcGMX1cSshCaMerleHKyOcdvKDjRgpme\nsJIIhIzk5wN79jiuJEJ1tRmKhMRKQhZCM0bt/DLr+A1nJ5rEGqyWEXdWJoWF7K+4krBytRksK+hw\nI6iS6Xp6IbRFixxnVWYvZPV+XBGqoapWYVkhtBDCUxlxhTtJa570fzAjkzJxzkeYqvjkBbIQmvt4\nWsDLLOFUSM0KAiVfoSzX7hSw80SezcikL4roERHNmMHGM26c769FX2JWvoIqTyLUC6FZjYzxlgQL\nrkw57tRZuuce4OBBYOpU1+agHTvY3+hoYPdu90xIvuqO19PzfYJKSYR6ITRvCKQ9tSe3HpW4h3ij\nHDjQWUbdmdCI+ygtNZZ1Hgl15gywfr17N2hfTap6+iTKrz6JcC+E5g2BtKcaFVLr6f4KCYPfKAGW\ny2BGRvk+EhKAQ4eUG7+R/yIpiTm6A3mDttp/E2rIZLogIVizk3tiOG1PCIH1lM5OtoJQJ7t5Mong\n4a4dHcC777KqsmVlTCGoP8u3feIJFgnVU2/QViIzrkMcMV78nntcX3j+muEHq/LyJVJJaKOV02Bm\nEuFOVVmJ9UglEUaoSxV8/bXzzdlfM/yemOwklYT7eDOJED87cCCwa5fvJj3SbBoiyXQS99Cy/+pt\n42tbrSytITHCm6CHRYuAfv2AmBjgzTd9G0FkZYRST0vakyuJIETP/qvepqfN8P2FXElYj3omz02q\nX3yhtNkFtOV95kymRLq6gPPPB5Ys8VzmrTSbhqqfTpqbwgwzSsDKJXVPXp5LJWEtPILphx/Y88mT\nWb4Ev9ECQGUlW1UkJwMtLY5yJ96UAX0TrBFWTqpC1U8nlYTE6xlOuNT29xapJKxFlMuUFJYoN3Uq\nu9FyCguBoiJg82YW/QQocsdvyiKBlEmzCsfVxMvXEzPT8mUqTzvAhOiwfY63ZQnEUghZWb4pcRAK\nBEq+wlWuuVympBC1tLDXOjocZeziixXZA4ji44nGjGHbdXQQTZpElJHB3ktLY9uHWpkMV6VG+PcB\nsPO1GrPyJR3XYYQrJ6Irh5us7S8xwqzDlsvljh1KJdjkZODyy4H0dJYw17s3e726GujVCzh2jOVS\nlJSwVceCBcC337L9REayVe6KFcD06cFxju7Ar6+0NBb+qz5GV5fyv81m7bG9wmJl5ReCcdihUATM\n1UzGXwUFg51AyVcwyrWI1YUgxf1NmqTIXt++jqsKgCg9nV1bjY1EUVHK6w0N3o9Db0xWF7vk15e4\nahKPMWYMe6262jfXoFn5Cm6p1CEYL6ZQqKSal8fGl5SkLPslzkgloY3anClOjKZN83ySlJ+vLY/8\nZpmYqJieRGXB/09ONnczNZrQeWKyNTsx1DuGrydpUkkEGF+VKTbCUyHVm8FYtf9wwVP5uvHGGykj\nI0O3BD4R0axZs6ikpIQqKytp48aNlhzXalz93uqbmDgxEm/e7soWVwLqz/DjtLSwv7m5bJvoaKZQ\nuILwZKIzYwaz+ffty3wj/LjR0YrvQ+scjTA7MQzUil0qiQATiB/eUyH1VJGFwurIF3gqXx9++CFt\n3LhRV0m8/fbbNG7cOCIiam5uppqaGq+O6yvl7cnvPWOGcrOtrlZm/2ZkKyXF8TPqFYqoTMyamcTj\naT20ztfV9xyIiaE3mL1vBlVnulDGqJKqr/A06zojQ3EU+mL/PZWRI0eipaVF9/1ly5ahsbERAFBT\nU4POzk4cOHAAmZmZpo7nq4rBnvzeW7cqoart7cwRGx3tWC1ACx7m+dVX7HlKCrBpk2NwhHh+0dGs\nXDgAREUB3d1sfPPnmzs3gFWhjY1llWgB5izXOl9X33NPqQ4rlUQI46mQtrSwC+Pdd927ufSUi8DX\n7N27F/n5+fbneXl52LNnj6aScKctr6+UN/+9e/cGGhqM4/XFMcTEKDk1H3zAIo7eeMP5M+qkurw8\nlnGt3r9YUvzoUfZ/dDTw6afAww+bk8dFi1ikVHs72+ell7IIIiIWOeXqHLW+50BMDD3Bsra8Fq9o\n/EKIDjtg8GVzWlpoLY8DhRn5MmrLO2HCBPr444/tzy+77DL69NNPTR/X16ZNd8xO4hi42UXPFMTl\nT/QFqE1MWvvmJiwxv0K9T9EU5Oo1T01i4RbtZ/a+GZJ3W6kkPEO86PPyPBf6nubAtlpJ3HrrrfTS\nSy/Zn5eVlVFbW5slx/UFntraOzqIMjP1wzfV/oCYGKKaGtfyZHSTVjvNx41zDMzo189ZMTU0uL7p\nh7OsSyURRugJqhkBnjFDiTsXL2BP9tXTHNhWKwnRcb1u3TqvHde+xswMWvyM2vHMb9SVlSwfgisU\nMbPYU9nmiiwhQdmXUQa3DNaQSiKs0BNUMwIsfkY0A3iyr1CL4vAWT+VrypQplJ2dTdHR0ZSXl0fP\nP/88zZs3j+bNm2ff5rbbbqPi4mKqrKzUNDWZOW6g0buxi7IlJr5xhSAmyzU0sP3w0FZ3ZVttkho2\nTAmZFU1g1dXsuGrlpfWcKLxlXSqJMEJPUM0IsBX7CjfbrCsCJV+hJtdaJh/xBi0mwYk+CHVmcXa2\nsp1WgpzRKkNPNrVeV0+M1LXKpk1jK5CsLP8km/rbtCWVRBhhJPj9+nlW3MzVRWQmUzbckUpCwZ3s\nZNHkw2VNz/E8Y4bzjVj0G4wf7zwGUYm4yo9wZ7y8QCAP5BAVnT9NTZ6clxVIJdFD8GX9nHCzwZpF\nKgkFI/nQMvm4KjOhnr13dLiuWSQqEVfVUY3G29jIFEFysrJNr17K2D2NfvKWmBhlHPX1vj+eWfmS\neRIhhtUx8jJhTmKEkXzwPAHeX4HnV2zfzqq9JiY65lnMnMn6RXDa2oAbbwRyc1mS54EDwIQJzp+7\n4AKW21NdzXIaxL4L6emOvbGNxsvzhDjDhrEud3ffrWzrq7wgPuYdO4CCAnaOvXsrlV9jYqw9nqVY\nrKz8QogO2xKs9g+o92elnTRUwwkDJV/BKNdmaxm5CrwQVwauPudJzSij8Wo5s/2B2jHPH9HR7G9F\nhfRJWE4wXkzhgpXmp1A1ZfV0JeGJctdKVuOPQYMcJx88qikykv1NTGR+CX7zttkcX9dDrGbMZczf\nARj8vPMDOydPAAAgAElEQVTzXfsIxeuAKwbRj+MPfwSRVBJhiz9n43o5FWYJ1XDCnq4k3FXu6hly\nQ4NyoweIYmO19ymGwPKbdmyso4KJimLKJDqaaPNmx+OKORDuJMj5Aq3VjxjhpaU8U1LYuRj5cXyJ\nVBJhilWzcXfKGIjHSk11XzHpKbJQDZ3t6UrCXeWuVcmVz5QjIhxv7uI+tW6Q6vLd4s23d29z43MX\nM30x+Bi4klRHeInfTWwsu57MliS3CqkkQghPVgdWXRBa/XPVkSb84hXj290poRyqZiU9erqScOcG\nJq46eW+HGTOIhg5lCkIoVeWwz8ZGJQT22msVOeIylJRE9KMfOSoJ9UpCb3xmV93u9sUoK2PjS0tT\nVgQ8gU+t+NT1rILh+pBKIoTw5KZqdMF6clGIS/yMDG1B5i0keZMXvQ526vGHqllJj56uJNxBK5Nf\nS67FZj9jxjiaisQbsmg2En0UXNm4KlWTn+/cxMid1bPaxGpkBhJNa3l5ju+pr9OODmVixj8X6OtD\nKokQwqqbqifKRu1U5AIt1rvhY3HVwU49/lA1K+khlYRrtFrhinJRUsLeU5uOMjKUbfhkJDKSqLbW\n8QarThp1p1QNf/Csba1kNfWqQV0ixEiWefJdXJx7GdmNjSwPIyaGfQ+jR0sl4TdC6WLSwqqbqqel\nNbQUgtZY1Jmp6ggOM5nfoYRUEq7RmkhMm8ZuvGPGaHeTA1hGNZc3dRE+ozplrsrL8Igpfgwi7SQ8\nrSxxd6+hlhamHEUzmbs+G2lu8jOhdDGZwV0zkrvKhi/5U1LYTM6oNr9oM66p0RfycPNDiEgl4Rqt\nm7YoEzzKiTttuTlH6wYPOIa9qluj9u/P3o+JYb4AUV5bWtiEhZt0xJwDvnqOjGT7GzPG2YcQH8+q\n0npSq8lI9o1Cgq2IGPQGqSTCCF+W3lDvUx3GKNqJe/dmf3klT/GGEG5+CBGpJFxjtAIVZ+njxxvX\nD+MKhMueui/EpEnOvgB1EIZepeOODkd5FmVfHXbrSa6CKPuNjfpBHA0NbHzjx/s3eU8Ps/IV4btc\nbolZfFV6A1D6+c6cCdTWAq+9prSTTEkBqqqUY1dWsv+7u1mryZUrlXIFixYB/fqxcgJTp7LSDJLw\ngstIfb3z78tLcoglN44cAbKygPh49lp0NLBhA1BcrPTDFvc7dSqTR4B95tAhYMUK4JNP2GvDhrEy\nHNHR7HlcHPDxx4776u5W5Dstje2Djzc5GRg6VNlW7GWdnMzKYnCI3P9eRNl/803WsnXFCmDgQGWs\n8fHsPL7/Hjh3Tr9FakhgsbLyCyE6bLfRmnm5265Rb3+TJimOOSLn1UVUFHtNqya/uFoQj+nKwR2K\nzJjRM1cSWrKkt6J1ta24OtCaxYsOZe6jUJtmxA6K3BfAw2xF/0NBATMXxcQ4rjh4Z7q4OCbbERFE\nF1zg6F/jY+ZmIE+afWn5GwDmoFY764Pl+jArXyF5tw01JWFF1rTWBeupWUqM8+af7dvXsTGMXs0c\nrT7FWo5wbwl0vSf2vfQ8JaFVnVXPpKgld1rJcuLNvLqaObZFUxHAqp/y8uG8KqrepERtzomMdKyk\nyh9anem0Hjzk25VSNDrf6molYkvvER0deFMTUQgoiRtvvJEyMjJ0WzwSEc2aNYtKSkqosrKSNm7c\nqLtdqCkJK3wMWhesp34BcaaVk8PGIl5MRs3p1TOnpCQlochoFuYpgXaIs++05ykJdc6MXrE8tVNZ\nK0pO7QuIimKOZ60Z9vjxjr95XBy76fbty0JkxSgpMeFTnNiISoMHZugls/FHnz6OGdDid6AXQRUV\n5ewA5+erVn7imNTJgIEi6JXEhx9+SBs3bnSrD3Bzc7NuH2Ai8ycbqFmqt05erUYtRJ6H0mrFefOx\niY1htI7P48n79HGecRJZd3P3ZckFd/bX0dEzlYReiLTIjBmON3qxB4L6exZ/R71wWD6bF7d1tQLg\ns38jZREby3IlxLGKPSTUylD8DvQc7HoOcHEbvqKormaKgZvIgoWgVxJExs3ib731Vnr55Zftz8vK\nyqitrU1zW7MnG6hZqrd5EVaNWyvOW5wRuXN8dSE2LXODNzd3qxPzzHx3PVFJELn+7tWrSaOe6eK+\n+OQkMpLdrPmNvbraMeRavQLgUVL8Zq+V36MO0xZLyoir3tpa5XlEhLI/rVpNRr2v1SsorVIdwWBa\n0iLklcSECRNozZo19ueXXXYZ/fvf/9bc1uzJhmrYpnrc3q6IPL1xiscX6+qI5qlgzbo285v3VCXh\nCvFGWVmpb6pRh4XyyYl4Q8/LY9uJJlAuP5MmERUWsu2zsoxvvvy4ffqwCYy4P3HVy0NRc3Ic9+eu\nr6+jgznJe/Vix+CmKvF4sbHBJ/8iZuUrqDrTsfNQsNlsuts+9NBD9v9ra2tRW1vrcv+LFvmu85S7\niF21xO5bRqjHvXUrC7sDWNjd1197dj6ehtiKx586lb2WkgJs2qQcl4dEBhvu/OZNTU1oamry67iC\nBT151Ho9PR1ITQWOH2fho1OnKu+J3/PAgazrHABMnw688QbQ2spCUwEmdytXsi52Yvj1Z58BRUUs\njLS4GFi/nr13wQXA6NHa48rIYNsfP87eP3WK/c3JYX+PHweSktj2+/axEO///m/g4EE2fh6yKl4L\nO3awv0lJwBNPsP+Tk1nY6+7dwOnTrFPekCHAiRPKd3nqFJCZycZXWGjFrxMkWKurjHFlbnrppZfs\nz31hbgoGrHRiu7MfrVWH2Vm/nm/E3eO6814wECj5CsRx1bWMjGoluVtmQqyHVFjIQl5TUtjnCwuV\nUi98Fp6czEygYjQUNwmJj/R0pSc1wEJfRR8GN2PFx7OZvrhyEX0KeoUFiZhsij6UmBhl1ZCf7zge\nbkZTP9TF/4IFs/IVNEpCdFyvW7fOJ47rYMAKk5c7TkaOeGHz2PFx41ipA25Ldde55omC0zuu3g0o\nmOhJSoLLo7o8vFE0ndhDQR0hRKQ4laurnR3RWjd/ddZ0ZCQrOS5uI5qOxIfYv0Ltj+DKQN3DwqjS\nq17+Q329s0ISFRZ/uFv8LxAEvZKYMmUKZWdnU3R0NOXl5dHzzz9P8+bNo3nz5tm3ue2226i4uJgq\nKyvp008/1d1XKCsJq2z3jY1KMTWjfelFjoiRH+7OfDxRcHrHDYXS4mbka8WKFVRWVkYlJSU0d+5c\np/dXr15NiYmJNGTIEBoyZAg9/PDDlhzXW7g8qm+cWnLKX2tpce67oK6npE7I1Huo+y/wTnR6n3O1\n2hAfWVnOPSxaWoyvQTHcVdxXTo5zm1X1o1ev4FUQRCGgJKwklJWEVbgzG1ebh8SbM58FqTuIGZmC\nPFFw4rahVlrcU/nq7u6m4uJi2rlzJ3V1dVFVVRVt2bLFYZvVq1fTlVdeaelxrcTT30Ss06TuE6EO\nK9UyyyQmOtYzUh+fPxeVgvgQk+i0wmD5SqJvX8fwV9GkZvQ9tLQoEym+OuDvaYXTlpcHrzxzpJLo\nAWhVmNSajWtlR/MZVXo6S1JSt1vk+MIU5I1SCIT/wlP5Wrt2LV1++eX2548++ig9+uijDtusXr2a\nJkyYYOlx/YFWk57sbOc8BCPzJ1co3NYfHc2i5LTCTvPymK+BJ61pJeDx6CKuINQ3bZuNqKrK+XOi\nzIs5PjNmsGKWUVGspAhfDUyZwpQR7wPBx8gVVHw8UV2dY7mbYMasfAVVdJPEGTGa48gRYM0a9vqk\nScDkydpRO2L0E6BEbjQ0sAJoIsnJjhFO27ezv2Jkh7e4G/mkFVEjnsvMmcEZQbV3717k5+fbn+fl\n5WE9D835DzabDWvXrkVVVRVyc3Px5JNPYtCgQU77MhO150vU3//Bg8D+/Y7bJCWxaKWHH9aWRx75\n9MQTwCWXAO3tQHOzss/Fi1mhPB4RxXn3XWDsWOCjj1gxPR4JNWIEsHAhUFrK5Lmzk71/7hwr+EcE\nHDig7KeykkUmHT/O9gmwY51/PlBQAGzeDJw8yV5vb2cRVlFRTA67utj583MXr6tjx4I3qg+wMGrP\nYmXlF0J02KZQ19QBlGZAerNrsa6MuKTXatCSlua4j0AW7XNVEyhYVxKvvvoq3XLLLfbn//znP+n2\n22932ObIkSN0/PhxIiJavnw59e/f3+vjeoqZVZn6+xd9BaIz2cjkKbYvzcx09C+MGcNWuFp2ft5L\nQjQtVVYqCXDcjKVuIBQf79w/ZcYM9j8/TmqqcSa4euXCcz3E1yMjA99tzhPMyldI3m3DSUm4unDF\ni5Q7BF3dyI3KC4gNWrT24e5N2RdmIK1ji+fiL9OTp/K1bt06B3PTnDlzNJ3XIkVFRdTe3u7VcT3F\njClRy1fA+yQYmTw5YsVXbmrS8h2onxcUMDlX+xsiIhwnOXl5jqYnLWUzebJ+1JI4rsxMff/G5MlK\nfxWt90IBqSRCFFcXrtYN35vZtfpiUe/DXf9BIHwX/gqd9VS+zpw5Q+eddx7t3LmTTp8+rem4bmtr\no3PnzhER0fr166mwsNDr43qK1asy/nupM6xFRL8YX7kCyixeDEnlj1693KvimpSkBEKoFY3YKKux\n0TF3Q+8RG0s0YoSySuCv88oCWgok0N3mPEEqiRDFzIXrjSOYHy81lT1chdDqwZfefCnuD/xlejIj\nX8uXL6fS0lIqLi6mOXPmEBE5hHg/88wzVF5eTlVVVTR8+HBat26dJcf1BCujytzpK6Luehgfr5TE\nEMNkp01zXgFw02pFBVuNqJUAl2Gt2krJyfqlN7RyG8TH+PGO5qvISKJrrnFeEQ0fHhzd5jzBrHzZ\n/vPhkMJmsyEEh61JZydzisXFAS0tnpXrABydvRkZxvuYORPYsoU5p8+eVZzYqanAhReyz9xzD9vf\njh3MqZeYqL2vESMUJ/rkyc7OOzPlR1zBvytfl1UJlHyFklzX1ipO3Kws5gjm5Tb4byNuw5k0iZXp\n0NsXwPazZAlw993st77nHia3330HHD7MnNMcLnudnawEiM3GZHbXLiZ76enMKd7RwbrFJSSw8hlR\nUWw/Ypc7Pr6mJsVJDrB9qAM+8vJYqZFQwrR8Waam/EiIDtsQs6YUdVkFo32I2+p1z3K39IKrWX2w\nZ1UbESj5CiW51vKV6YW+iqYbrV7SYtZ3bCwzSXFHd0eH4yxeXAnEx7NyHrzsB9/elZzzB3eIc9MX\nNx2JeR0VFSxkXPxcZGRwJ83pYVa+dD918uRJp9cOHTpk6iBWE0oXkxo956urm64YRy5GNvHPRUQo\nS/ZBg7RzJ7hdtrpauZBE27C4P24m0BuPnumCj5NfaMGaVW2EVBKu4UEQRlF2XEZ4mW4t+/2MGcxh\nrJfFPHmyY3STOstaq3S9VrY2l3N10Abv+SDKcksLy7AeP569JprTbLbgaSLkKZYricGDB9PatWvt\nz1999VUqKSkxdRCrCaWLSY3eDNsTp634ea3M1NhY4883NCiJdaNHOyYD8Yufl2n2dMYkHkfsUxwq\n9NQe1+6gDmd1N1zaSLaNoo54y1O9rGstpZGQwHwV6izv2FglMoorJL1EVH6OOTksbJavRpKTQ3MF\nwbFcSWzevJmGDh1Kd911F1177bU0duxYam1tNT1AKwn2i8kIo7r7RvAKlGLUhvgZsdCZeqaj1XLS\nyByk1e9YLyvV6PxCTUEQ9dwe1+6gvqFb0eNcr0ZTTg5TEEbmIqNHTo5+S1F+nfD8CS7Xffs6NzES\nH5MmWfp1+h3LlQQR0b/+9S/q06cPZWVl0XfffWfqAL4g2C8mI8RZlSd2e3HWpjVD37yZCbvWUlg8\nDhd0rZu52lTEH1q5FbwooNp8Fux1mVzRU3tcu4O6O5s7XQ1d0dHByoeLyoBPZIxu8uKDrwz4BEqs\ntcT3oZZfgPk39Mxc6kdycujKNMdyJXHTTTfRqFGjaMeOHfTOO+9QWVkZPf3006YHaCXBfjG5i9mq\nqp4Iq9oXoVdQjUi7TalW32GxHHIoO6i16OiQSkKPjg42yfCmVhGfVOTnK/4MUb5ycpSVq1ZeQnS0\nY+4FLxEeEUE0eDCTW3GiJBbsEyc/eqXHtR59+oS2mYljuZJ46qmn7Mk/RESdnZ100003mTqI1QT7\nxeQu7s66PWn2o0bti+D7c+U81yr3nJTkPIZQNy9pIZWEe5jJgNfyQWiZrdR5CVwhqB3JWopEnash\nNj0aP54pOnXEEuCc+CdOmMIBn5ibgpVQu5jM4E6ykno7LSccjwxJSGDhgqNHO4YRiiGJekpr2jT9\n3hVGUS5aYxMvWrOJfL5GKglj+O8qZjG7WkWqTZnc/BMZyWRh/HjHRlh61V/1St7zB+9Kx+VKrZT4\nOMUaUmrTlWiCCuVoJjWWK4lvv/2WrrnmGhowYAAVFRVRUVER9evXz/QArSRULiZvEIWb14zRym5W\nm3vEm7B6ZqSVtTppkusZoSuTkt777rTAVM/6tMJ81fi6hpNUEs7oTVrcXUWqo97Efg18tu6Ok5r7\n43g5EL0ifTzgQvSjpKYy5dC3r+MKxOi4mZl++HL9hOVK4qKLLqJVq1ZRRUUFtbS00IMPPki//e1v\nTQ/QSoL5YrIKcbb0ox/p36TV5h69kMKEBOfcCK1IJ62mLK5MSnrvq18Xo6zE43PcTeTztR9EKgln\ntKoRV1e775/gssArGLvyCYg3cT6zj4tjPR70lJWW7PTvb+ycLi/Xd5AHcytSM1iuJKqrq4mIHHpS\n89cCTTBfTFYhmn7Emy0vk8xv5GpTkDhzqqhwNAnwpu/qqBS9PsdaY3E1VqPXxRsNd1CKuJvI52s/\niFQSzuj5q8rK2O8VG8vCR10l1und2OPjHfMhuJIQ8yDq67WVlZZfgsuGVlST+IiJ0fZF8BDZcMJy\nJTF8+HDq7u6mhoYGevrpp+m1116j0tJS0wO0kmC+mHyBUdis+nlHh1LKWa1g9LKjx4xhYYjqXApX\neGr2cXVzFyNRzCglq5BKwhm971zrJsxXo42Njsl306Y5V2ONjHROltNaZURFsX2I5cm5nIhVZJOT\nHQtXuiropx5LOK4gOJYriQ0bNtDRo0eptbWVpk+fTldffbVm5cpAEMwXk6/RawKj14hIdCzzsENu\n8xdnUKK/QnRmGzmaxQgUrZo8akIlh0IqCfdR59SIs3qj9/hDlMHoaMfyMlqP1FQlwk6c5OTnO+c9\nTJpknByn9eBNisIRs/KlWwX2k08+wZw5c9DS0oLu7m4QESIiIrB582bPqwhaTDBUy/RFlVN3UFdC\n5c/37dOvyqpVjVNk2DDWgvLdd9n/AwcqVTTFlqnqffftq1TRFKt7+vq78fX+ZRVY1/DfwGZj8nHm\nDHs9Olr5PyODtfwEWAXWY8cc95GSAlxwAZO7lBTWjlTV9RWRkcDw4cDHHzvuY/Jkx3aiWpVazdC7\nN3DihPf7CUYsrwLbv39/Wrp0KW3fvp127txpfwQDBsP2G4FIIjMy74h+BT7j1ws75H/F9qZ6Ji3R\nqac2Q/Flvvi6uoeAL74b6bgOPFoyMmyY8jrPyObJd2L3OL6C4FnRfKWrZRqKilJ6Q+TkKPIrhsLy\nek2erBj0HuES7qqFWfnS/dRFF11kejC+JhgupkAkkWmFu3Kl0dLiaDJKT3e0/4rVLltanE1QXPGo\n6zy1tDj6OERcZW3zjl5GWNF32WqkknCNniPbVRCDlr/JVWtRXgJGnS/U0eFYBdbdEhtGpqZwxqx8\n6ZqbVq5ciVdeeQVjxoxBTEyMfbly9dVXm1rqWEkwLMvdbYDjrWlE/PzmzcDevcw09PnnQGOjstzu\n1481Sjl8GOjTBzh+XNmHuhnMgAHAtm2s8ZCIegmv1SBG73z46199BXz/PTMfbNoEFBYan192NmtY\nw4+XkaHsPz1dMXuJx/J18yFpbnKNmd9gwAD2W0dHA2PGMDlrbwfOnWMNgBITmXmzuhr48ktmtoqL\nYw2HHnkEeO01Jt8xMUBsLPvb3s5u8QC7Lk6dYp9vbmbHARTzF8DMV2q559TXA2+/bf47CXbMyleU\n3hsvvPACvv32W3R3dyMiIsL+ejAoiWAgOdm5G5sWW7cqN92BA4Gvv/bsxiZ+PjWV/f3hB9a1Ky6O\nPR82jF0wO3ey5/wiSEgARo0CFi5kx+Q38q1blQuLM2wY219zM3uemAj86U/G4yktBYYOZTdw8fW8\nPOCyy5gSc6Ucu7qU/202x/2IduaZM5Xv293vXuI7jH4DvYlEW5vS8e1f/3L87QFg5Ej2md69gT17\nmAI4/3x289+6lSkIgCmVI0ecj8v3nZrKJjyinw4ALrmE+RvUfg+Ayfv//q/759+j0FtilJaWOtRu\nCiYMhh10qEshe2pDF5f1Yvifemmvl3zXr5/r5COexaqVDa02B/HjiJEqGRnOY3PXb8A/l5rKxic2\nK+LvJST4t4RHoOQrlOTaCL3fnv+2ERHOuQmiX0ud3KYOzxabEGmZmNSlNUQTrJbfIyEhfCOaRMzK\nl+6npk+fTl9++aXpAfmSULqYxHLFZmzooiIwqpMkJtWJN2xRMfBxiElzkZGKs05dClrLic1tyuqL\nfNIk/QQ9oxu8VpIVV1odHa5bsvoCqSS8Iy+P/V7qMjLXXut4887JYQly6qxtdS6FeGOvr2eTEm98\nD+pHsIdkW4XlSqKsrIyioqKof//+NHjwYBo8eDBVVFSYHqCVhNrF5El+gKv6ReJNW2+VIN6wxTyK\nH/2I3eg3b3ZMYOKOQXUiHpH+SkhMYNJKvlPf4LXKfYirFPVKhBOIAAGpJLxDryCluve0evbO5UGM\nVKqoYAly/HlDg361VjOPsWP9+c0EFsuVhBj2KkNg/Yer+kXiDF28eMTVili6g8/81SsKPlsTs0u1\nIo30VkJaCkWNq3If6jLmWqukQCTgSSXhHXqrSL7C4I+YGKUysVZfiYICx9BYbhYSJyjePMrLe84q\ngsgHSiKYCZeLSQtX9YvUM3S+jRhaqGUTVq8Ixo9XwmI5Zvtv68E/5+4qIVgaGEkl4R16ZkItn5ho\nSlJPRoz6unsa7qou/aFVOyzcMStfEZAEFYsWsciMzz9nf8XQVYD9P3Qo+7+6GmhoYNsUFrL3GhpY\nGCrAMlQ7Oli44qJFLGoEYKGBGzawSI9bbmHvA47RUnFxLFO7vp69tnix5+GmPAJmyRLHc5k5k+37\nzBkW9spfF4//3HOefnOB5Z133sGAAQPQv39/PPbYY5rb3HHHHejfvz+qqqqwadMmP4/QfyQnsxBV\ngEUmRUWx3/vbb9lrNhv7GxfHsqkB9ptfcgn73HffMXnhIaxJSexvfDywdi0wYQK71XMi3LiLiWGv\nFRXsGvFXlYSQx2Jl5ReCfdiuEsRcNQoS39MzAWnN7MWoELFGPp/J6Tn8uG9jzBjFfCTWZRLtx2L7\nSV6bnxdv4+NsbDQ+B6tXLFbjqXx1d3dTcXEx7dy5k7q6uqiqqoq2bNnisM3bb79N48aNIyKi5uZm\nqqmp8fq4wYy4ahBXFTEx7L2cHCXjmv/m6m509fVKAp5WLxQzj564guCYla+QlMpgv5jMNunRes8T\nE4wYFcIVguij0GquUl2t7WhUOwe5c1svO1YMiRVDFNXnkJWlb34KFjyVr7Vr19Lll19uf/7oo4/S\no48+6rDNrbfeSi+//LL9eVlZGbW1tXl1XH9gtsGTVui2aPLp3ds5019dALCwUCkuyZ3ZahnWC4HV\nMzn1hFBXPczKl24yncQ8arOJOrnIyKyifm/qVP1tOWKxNYCZoV5/nSXcPfccM0GJBf7Ky5l5KiaG\nJRG9+abyOW5mEpfwcXGswJo4vqQkJXlJXbyNJ0klJQFPPAH8/OfKe21tQE0NyxCPiWHn588Cib5g\n7969yM/Ptz/Py8vDelXGltY2e/bsQWZmpsN2Dz30kP3/2tpa1NbW+mTM7iImN4oJja5YtIglwv2n\nWANSU1lyHOfkSSXRbeZMlunf3a28HxXFkuHEbOm8POD0acdCfqLZyeg1gJmc7r675yRiNjU1oamp\nyfsdWays/EKwD9uo2Q5/Xc+son7PKDeCo24NqVf8jz9SU7VNP5MmOYcp9urlWPRMrMGjV7xNnBHy\n2v58ZcMT48TVS0yM58lyvmxh6ql8vfrqq3TLLbfYn//zn/+k22+/3WGbCRMm0Mcff2x/ftlll9Gn\nn37q1XH9gTchyFpFANWzfHXJe71HVBSTOXUOhSePpKTgXLn6C7PyJR3XPoA7bPnsWL06UL9v9Nnk\nZKCggM26Vqxgsy5Acf7W1ysOvoQEVh9HTUaGMqOz2diMju+Ljy0tjdVc4hPgyEg2izt9Gnj4Yefx\nPfIIc3ifPg38/e/M0bhtG/sbH69s397OSkH37s3GefQoe759u7JNVxd7jZ+bO/AZrvidBIrc3Fy0\ntrban7e2tiIvL89wmz179iA3N9dvYzQLD6RQB1C4gyj3zc1sP6NGsdf69GFyefgwUFTEAinS0vT3\n1d3N9iPWJPOEPn1YMEgor1gDhsXKypAVK1ZQWVkZlZSU0Ny5c53eX716NSUmJtKQIUNoyJAh9PDD\nD2vux8/D9hpvHbJaszn1CsAoM1nLj8AdiNxZrVeyQ28GqW44JM7s1b201Znf0dFsdWJUhtzMd2IV\nnsrXmTNn6LzzzqOdO3fS6dOnXTqu161bF/aOayJnuZ8xg8mB6FcQ/8/JYbKYman4ELTamJp55OQE\n9rsIBszKl9+k0p0IkNWrV9OVV17pcl/hdjG5QsvkpNehjj/XymbmuRcpKY71nSZPds7PcNXkXnRs\nq/sTp6Upmd3qzG+12Y2brLwpV2I1ZuRr+fLlVFpaSsXFxTRnzhwiIpo3bx7NmzfPvs1tt91GxcXF\nVFlZ6WRqMnvcUEI9WRk2THFI86TOGTMUJSFOaPj/3FzlSZ6EzdazHdacoFcS7kSArF69miZMmOBy\nX+F+MWnhyq9h5AfhZTrEhDuxYcuYMY69Jvg2RnZ/rnjUCkK8eMWyIS0tysrBnYJ9vvQ5uCJQ8hXu\ncprJ+u4AAB3ESURBVM1lrrpayaYePVoJhyXSXvVyf1ZKCtHQoZ6vIsK5kZAnBL2SWLJkiUvnXlNT\nE/Xt25cqKytp3Lhx9NVXX2nuK9wuJr0bothfmjvs3DWvGJljtGZrvEf1jBlK2Q5xtaA2YWllfkdG\nEo0YoW1i4ishdXisHu6G/vpCmYSzkjD7fVnxOaOqAFzW1WGwkZGs/AzvPZ2f775y4M5uCcOsfPkt\nBNbG4zMNOP/889Ha2oq4uDisWLECDQ0N2Lp1q+a2wRYq6A16YYZbtwL79yvb5eW570BctEi/KczW\nrcCBA46vrV3LHNELF7LwRBGt8Fue+b1iBVBZyZzea9eysFd+XB6+m5bGHNi834XePvn58+ZFAHPG\n86xxrfM2G6IpYlmoYAhg9vuy4nPDhgG9erGMaZ59zbP7Fy9WQqoBFmjRp4/y2/Nt1T0ojLj8ctdN\nryRuYLGy0mXdunUO5qY5c+ZoOq9FioqKqL293el1Pw7bL+jN+rVKd3uL2J5U/Zg82dnWO3686zLf\nnpQBT0piSVJ6Ib3iDNOdVYcvHNiBki9/HNfs9+Xt58Qij+Lvqw6HFh9ia1JPHdc2W88Od9XCrHz5\n7WpwJwKkra3N3uho/fr1VFhYqLmvcFMSejdbdyqt6iEu88UyGeoLkvsT+MWvVhL85uxJKRE1/EaR\nkuLom+D+Eq1ttZosefLdeUM4KwlvizV6+turizzywAhRafTurX2j96YkeG2t6a8obAl6JUHkOgLk\nmWeeofLycqqqqqLhw4fTunXrNPcTbkrCF6iT4vj/YuOhzEzHCCQi59mYlkPRKMQ2Nlap56TnVBcT\norgvhCNuK/7vT0d2OCsJq3HXdyQmYYpKIy1NCZUWH0lJyjbqiYu6oqv6kZgoVxFahISSsIpQvJis\nxJ0bphi9JM7M1MXS1C1K1RdcejrL4hbbR+pldKvr6ujdNPjF74kJzZ9lxKWScA2XGbHdrCc3Zq40\n1AEUXEHw4n/q4AibzdEMqfWQzmptpJIIU7QUgqsbJk9ayspiy25RQRAZ93EQH3Fxzq+pZ/5EygUv\nNkEyiiwxY/LwZ4c6qST04fIorga1SsG4i7ifzExmfhTNo542GBIqn0hUSCURRoiKQatCq6sbplaO\nhLgdv0nz6rB8NijaiTMynC/QlBTjm4F6e3dm/O6akfxZRlwqCX20EuLcMQfqvZ+bq5iQRo92nrQU\nFkoFYRVSSYQRWoXR1K1DjW6YRtnX4nPRMZiX5+wo7uhQji+uRPSYNk0xOYmmJKM8EO7IVJu+9Hp8\n+wOpJBzRyt5XZ+SbLY+vDqTIzFSOER3t2v8gPiTGSCURRog3eTEByV1cVaHVmw1qlf+YNo3ZhbUy\npI2aCYmVZsU6TxkZ2uPiqxRXPb79gVQSjqh7kWvJo6vVrdb7euHYqanavU+MHpde6vOvIeQxK1+2\n/3w4pLDZbAjBYbtNZ6dzIpy6J4Un1Szr61nS27BhLBlv6lT2vLqaJbnl57O+EhkZwEsvKQlLaWms\nBn9HB3s+eTI7Lh/HkSNKT4DJk1lPiRUrWALc0aPK6+++q+yDv7Z4sTKulBRg0yaW+MRf4/0q+Jj9\nWb0zUPIVrHKdnw/s2cN+k88/d0xQ43IZHc2S3xYs0P6tuEzHxbHf89QpVtHVk+Q4PUpLWfViWeHV\nGNPyZZma8iMhOmyv0Fquu2PPF53Y3FwkrjTE/Rq1iNRycoumsMZGdpzevR2LBHZ0sNo8/DMVFYpj\nUmyXylGHSgYilDFQ8hWscq3lF+N4GnWmFyThzkPL9DRypAx3dRez8iU704UIWt3s1KUSxFk+X21s\n3arM9nlXruRk9hg4UOkWVl3tWKqjTx8204uPZ/tbsoR9ho8jOpqV78jIYO81NirH4WU9cnLYZ/r1\nY13GAKC4GPi//2Md6gBg0iTHGSDvVwH0nA5iwU5iIvvrTidFVytevj3Auh+eO8f+t9nYbZ//1eLs\nWefX/v1vuYLwNbLpUIiQns4eSUnKa+oLVKsRj16r1K1b2Y2at4csLHRsH3nxxex4x46x1pJ3362M\nIzqafe6HH5T3+HEiI5V9NDcz81Hv3soY5s93NDG4UdJLEmCMGg+p33PVDCo9nbUyjYpSFERsLJO/\n6GhH+XFFRITSJEviQyxe0fiFEB22V2gt69UO6rw89j5PRtLahqNVF0qdCc23SUtTnNnqaBRuPuIm\nLf6+GE6rdnZqJdMFsjS4mkDJVzjItZ4DWyu/QtxOjHLjD3VFWPVDlgD3DLPyFZJSGQ4Xk6e4k0xm\nZDtWo9XwR7x5T5um3Phrapz9EKICEBVYRgbbr1HdJa2IKX9mVLtCKgnzaE1K1KHOXMa4P6qsTN8H\noRXlFBEhs6rNYFa+pLkpRHCn17CR7Vhk5kygoYGZfebPZ/ubOZP5ErKygNdfB3btYj6Gtjb2P99v\nczPbhj+fP9/RznzwICvzvGSJ43jFntzbtwOHDjn2tdYzi0lCC63+7Vu3KmXAk5OZaSkuDvj0U1Y2\nXOx3LnL2rGIO5dhswGefyRLg/kSGwIYI7oTAaoXOalFbqzi809NZXwh1OOu6dUrY40cfAQ8/zC7O\ngwdZeGtEBHvv00/Z35wcpmS0wiTVx8zKYspHDG91d+z+QIbAeo8or2fOsAlBRAQLiDh50tH/pUZ0\naItERQHbtkkFYRYZAhuGuCrPYRatGv/qzG6x8Bqv16RlN46NZdu7Gp+3CYL+JFDyFU5yrS4N06+f\ncwirWp569XL2WfBHdLQ0MXmLWfmS5qYgRowU4UtyM+YY0dTT2amYrn70I/Z+QgJbxqemKtFTYgQS\nn3ycPu2871OngBtvdG3qEs1lhYXOJglJeCGaDxcsAAoKlBDWyEgmi/X1LKKJv3bmDHD4sPb+Vq+W\nK4iAYbGy8gshOmy30KqT4+3sW88prFWKmW/DC68lJCgzOL1kO+6ADObVgScESr7CSa7VvUB4+Y3o\naCUqyZPEury8gJ5OWGBWvqRPIsgQbfeTJjEnsLd2enVZjnvucbYXq8tgTJjg6KNYvJitNNQzvcRE\n5th2d3xq34o4Fk/LjfgK6ZOwlpwcpVd7ejr7vZOTFbl0hc3G+qPLlYR3SJ9EmOCLvglGBf8KCtgK\nYfRox3BYrXHwlY1oW66v92wsRsUGAx36ygmUfIWaXLub26Iu4ifm+eitTnk3ushImQ9hFWblK7Sk\n8j+E2sXkCUZmG72S354moIkKQHQ49+un7E/LvMXHxm/snnSW0zp2R4d/mwm5iyfy1d7eTmPGjKH+\n/ftTXV0ddeicRGFhIVVUVNCQIUNo2LBhXh83GNBT8Gq5FPuMcJlRd7bTemRkSGe1lUgl0QMwmoWL\nN3hXCkRURHoKw51+xWZu6urPBqMvwxP5uvvuu+mxxx4jIqK5c+fSvffeq7ldUVERtbe3W3bcYEBP\nwavlVCtxU9zGqB1psKwuwwGpJHoARrNw8QYfG+vYPH7SJP196ikMfjGXlbFQxbQ0oilTWKhs377a\n/SXUuFr5BFMpDhFP5KusrIza2tqIiGj//v1UVlamuV1RURF9//33lh03GHBV8kXdO0L8rbXCsNUP\nMytViT5SSfQAjGbh/KJLSHC+2LT6Uruz/xkzHP0PouJxZ5anLisuKjL182CaMXoiX8nJyfb/z507\n5/BcpF+/fjRkyBC64IIL6LnnntM97oMPPmh/rF692qNxBwtaciTmRPCSLIWFSl/0igpH+brkEqkg\nvGX16tUO8mT2vimjm8IEnrHc0cGilTiVlSxaypOoIR6BtHmzY7Mgkepq4P33jaOT1NErGRksY5uj\nlXkdDKjlq66uDm28trnAI488gsbGRnQIX1Lfvn1xWCPYf//+/cjOzsahQ4dQV1eHp59+GiNHjjQ8\nbigjRrGJ2fxRUUq2dXo6K88CsDIxv/89UFPDKrtWVARm3OGMWfmS/STCBF4zp7OTJbd1dbHwWV6b\nyRPEPhWAUuO/uhrIznbcr7qnxeLFjt3KeFlxAOjVi322q4vt6/XXWZnxYCjFYcSqVat038vMzERb\nWxuysrKwf/9+ZGRkaG6XnZ0NAEhPT8dVV12FDRs2OCmJUMOoVIwoF7zWV0oKKwvOw2G5ggCAt95i\nsrtvX3DLQk9EZlyHGcnJ7Ob79tvs7z33OGZbuwPPlk1NZY/Ro1nOxvvvK/vlF7JRM6R332U3BoAp\nhYICJZO7sDA8Mq8nTpyIF154AQDwwgsvoKGhwWmbEydO4Oh/+rkeP34cK1euREUYTJWNekeIctHc\nzHJtduwAzjtPe1/d3UBTk3YPCkmAscwA5kdCdNgBwUweArcpu+Mz0HJequs09evH9sXDHYMp3FUL\nT+Srvb2dLrvsMqcQ2L1791L9f5JItm/fTlVVVVRVVUXl5eU0Z84cr48bDGj1L+G408dE/aisDG65\nCHXMypf0SYQ56mxrT2btWp81U402O1tpVxoXx1YViYnBk2GtRmZcu8eIEc5Z+a7ko7MTGDwY2LvX\n8fVLLwVeey045SFckBnXEk3UNXSMQk7V72vNBs2sTMTKnmLyVDBFNIkESr5CTa61Ql1dyceMGdqN\nhIJVFsIJs/IlHddhDndoA47OxPPPZz4Cccan9z5nwAClGm1KCnMy1tc7zxjVs8nzz2f+ichIpfmM\nbC4U+ixa5NwDxFXzqK1bnRsJVVdLWQhmpLmpByGaj2JiHE0FycnAq6+ykNfqanax8/f79WMKY80a\nJXyRRynxz3NFBDgWKezdG6iqYmGN/Cfr3Tu4o1ikuck8es2j+MThq6+A779nryUmAiNHAgsXBq8s\nhBNm5UtGN/UgxJ4O6v4PW7cqOREFBY7v5+Swmz5XEHFxwPDhjp8XEVcfJ0+y6BYum3FxwNdfy5tC\nuJKczB4NDUpEHQ+N/uADpiBiYoDx41n14LfekrIQ7Egl0YMQ+w+re2arm8RoKZTKSqYwtmwBiopY\nMhRvUiSyaJHSTIZTXq58VpZ8Dm/UobFvvqmYGQG2Ao2Lk8ohVJBKogcycyab6R07prymVhpaCuWD\nD1hUSmEh0NLCkqHefdc5tj05meVWiJSUKJ+VBDfqToaefCY/n2XqA4qvQexyCEh/VKghlUQY4uoi\n10qCuuceVjJj6lTnz4gKg7NjB/ublAQ88YTzMXJzmVkBYDeLBQu8PSuJvzBKknP1mT17FLNlYSGT\nmd692fP4eGZmCqYSLBLXSCURhri6yI2ypN25McycqZgPfviBldZQ09KizCDVMfGS4MZVhJIWPOot\nKkr57Pz57P+iIvb32DFpZgpFpJIIQ1xd5GrTkjufEdm6lRVtA1gorNb2ovP64EFZbiGU0JIPV3Az\nYnc3kJentMmtrQW+/Za9J81MoYkMgQ1D9MIQPf2MXvYsD6VNSQE2bdL2M3R2AgMHBmeVV1fIEFjP\n0crOF0Oh8/KAL74IHRkIR0Ii43rFihVUVlZGJSUlNHfuXM1tZs2aRSUlJVRZWUkbN27U3MbPww55\nPGnuI26rV7vJ3W5ywdh1zh0CJV+hLNfq37qsjCgqSukVEWoyEI6YlS+/SWV3dzcVFxfTzp07qaur\ni6qqqmjLli0O27z99ts0btw4IiJqbm6mmpoazX2F8sWkha87tHlSSkPdKEivIF+odJkzg1QS3iM2\nGcrJCfRoJETm5ctvPokNGzagpKQERUVFiI6OxpQpU7B06VKHbZYtW4bGxkYAQE1NDTo7O3HgwAF/\nDTFgmIkm8QRP/A3qEs/9+rEoJXXUk3rMvj4HSWjB82Ti4oC1awM7Fol3+K120969e5Gfn29/npeX\nh/Xr17vcZs+ePcjMzHTa30MPPWT/v7a2FrW1tZaP2V+YiSbxBLHGjlEnOa1tDx8Gdu5k7/HMWa0x\nT53q23PwJU1NTWhqagr0MEIe0Yf1/vvMT/HxxzI3JtTxm5Kw2WxubUcqx4re50QlEepoFUqzEr0i\nf+JNX29bHuqqjmJSj9nX5+BL1JOM3/3ud4EbTAjz5ptKSfiYGKC1NbDjkViD38xNubm5aBWkprW1\nFXl5eYbb7NmzB7m5uf4aYsDQSlbzFWZMTzExQGmpo8lJPWZ/noMkOBH7ofM6X5LQx29KYujQofju\nu+/Q0tKCrq4uvPLKK5g4caLDNhMnTsSLL74IAGhubkZycrKmqUliHk9i4Pm2w4axKq7S3yAxgmdW\nA0pSnST08dtPGRUVhWeeeQaXX345zp49i5tvvhkDBw7EX//6VwDArbfeivr6eixfvhwlJSXo06cP\n5vOUTYlliOYkEa2cCL5tfT3bJhT9DRLrEWUlI4Nl18fFsZLwH3wgy7CEGzKZTgLAMfFJ3R9i+nRg\n+XIWsdKvX3C3HrUCmUxnjCgr6ems0CPAikZGR4emX6onYFa+5KJQAsDRVxEXx24EfFXBK74CrFkQ\nANx4I/D664EYqcSfaK0wRVlJSmKVgNPSmIzwsvKS8EHWbpIAcPRVtLQ45jzwm0JkpLJ9CEx4JRag\nlf8iysqSJez/sjLWuVD6rcIPaW7yEr36RqFMfj4r+ZyUBHz+Ofs7cyYr1Mdtzu+/Hx7nqoU0Nylo\n1WTyZjtJ4DArX1JJeImRLd9TgkXhjBjh2P+an5OZwoGhiFQSCu7+5j1FNkIZ2eM6QFiZLR0spS3U\n/a85MhfCmSVLlqC8vByRkZHYuHGj7nbvvPMOBgwYgP79++Oxxx7z4wi9w93fXMpG+CKVhJeYqb2v\nhy/Lc3jSkjI9Xb9/tcSRiooKvP766xg1apTuNmfPnsXtt9+Od955B1u2bMFLL72Er7/+2o+jlEjM\nI5WEl1g5g7JS4ajxZJWya5d+/2qJIwMGDEBpaanhNu4Ut5RIghUZAhtE6CW6WYGZchzx8azUQmen\nNCN4gzvFLTnhVLhSElisKlwplUQPwZMCfIsWsVpN4mrCV8orFKirq0Mbr1wnMGfOHFx55ZUuP+9u\ncUsgvApXSgKLVYUrpZLoIXiySklOBoYOVUIae3opjlWrVnn1eXeKW0okwYr0SUjsiM7tv/zFd/6R\ncEUvvNCd4pYSSbAilYTEjujcvvtuGdLoDq+//jry8/PR3NyM8ePHY9y4cQCAffv2Yfz48QAci1sO\nGjQIP/3pTzFw4MBADlsicRuZTCexI7NmGTKZThKOyIxridfIrFmGVBKScEQqCYnEIqSSkIQjsixH\niONJRrREIpH4C6kkgoRgqdskkUgkIlJJBAm+rNskkUgkZpE+iSBBOo2DB+mTkIQj0nEtkViEVBKS\ncEQ6riUSiURiOVJJSCQSiUQXqSQkEolEootUEhKJRCLRRSoJiUQikegilYREIpFIdJFKQiKRSCS6\nSCUhkUgkEl2kkpBIJBKJLlJJSCQSiUQXqSQkEolEootUEhJJD0H2LJGYQSoJiaSHIHuWSMwglYRE\n0kOQPUskZpClwiUSFeFaKlz2LOnZBHWp8MOHD6Ourg6lpaUYO3YsOnUMokVFRaisrER1dTUuvPBC\nfwzNI5qamnrUcQN57ECesycsWbIE5eXliIyMxMaNG3W3C6Rs8+8yORlYvNg6BeGL38hXv7vcr3n8\noiTmzp2Luro6bN26FZdddhnmzp2ruZ3NZkNTUxM2bdqEDRs2+GNoHtETb5g98Zw9oaKiAq+//jpG\njRpluF0gZTuUbmShNNZQ3K8Z/KIkli1bhsbGRgBAY2Mj3njjDd1tpRlJEkoMGDAApaWlbm0rZVsS\nivhFSRw4cACZmZkAgMzMTBw4cEBzO5vNhjFjxmDo0KH429/+5o+hSSR+Qcq2JGQhixgzZgwNHjzY\n6bF06VJKTk522DYlJUVzH/v27SMiooMHD1JVVRV9+OGHmtsBkA/58OnDHdletmyZfZva2lr69NNP\nda8Pd2Q70OcsH+H/MEMULGLVqlW672VmZqKtrQ1ZWVnYv38/MjIyNLfLzs4GAKSnp+Oqq67Chg0b\nMHLkSKftSC7bJX7ESLbdxR3ZlnItCUb8Ym6aOHEiXnjhBQDACy+8gIaGBqdtTpw4gaNHjwIAjh8/\njpUrV6KiosIfw5NILEHvJi9lWxLK+EVJzJ49G6tWrUJpaSnef/99zJ49GwCwb98+jB8/HgDQ1taG\nkSNHYsiQIaipqcGECRMwduxYfwxPIjHN66+/jvz8fDQ3N2P8+PEYN24cACnbkjDClJHKj9x11100\nYMAAqqyspKuuuoo6Ozs1t1uxYgWVlZVRSUkJzZ0715JjL168mAYNGkQRERGG9ubCwkKqqKigIUOG\n0LBhw/x2XF+cc3t7O40ZM4b69+9PdXV11NHRobmdVefszjnMmjWLSkpKqLKykjZu3Gj6WJ4ee/Xq\n1ZSYmEhDhgyhIUOG0MMPP2zZsYl8J9u+kFtfyaTV8uYrefKFrNx4442UkZFBgwcP1t3G07G62qeZ\ncQa9kli5ciWdPXuWiIjuvfdeuvfee5226e7upuLiYtq5cyd1dXVRVVUVbdmyxetjf/311/Ttt9+6\ndEoWFRVRe3u718fz5Li+Oue7776bHnvsMSIimjt3rub3TWTNObtzDm+//TaNGzeOiIiam5uppqbG\nq2N6cuzVq1fTlVdeacnxtPCVbPtCbn0lk1bKm6/kyVey8uGHH9LGjRt1b+hmxupqn2bGGfS1m+rq\n6hARwYZZU1ODPXv2OG2zYcMGlJSUoKioCNHR0ZgyZQqWLl3q9bEDFQPvznF9dc7+zGlx5xzE8dTU\n1KCzs1M3hNrqYwO+dSb7SrZ9Ibe+kkkr5c1X8uQrWRk5ciRSUlJ03zczVlf7NDPOoFcSIv/4xz9Q\nX1/v9PrevXuRn59vf56Xl4e9e/f6bVyBiIH31Tn7M6fFnXPQ2kbrZuqLY9tsNqxduxZVVVWor6/H\nli1bvD6uHoGQbavl1sxYrZQ3X8lToGTFF7JvZpyWhcB6Q11dHdra2pxenzNnDq688koAwCOPPIKY\nmBhMnTrVaTubzebTY7tizZo1yM7OxqFDh1BXV4cBAwZohu5aeVxfnPMjjzzidAy945g5ZzXunoN6\n5uPNuXuyj/PPPx+tra2Ii4vDihUr0NDQgK1bt3p0HF/Jti/k9rnnnsOpU6dM79PTsVotb76SJ3/J\nihZWy76ZcQaFknAVh75gwQIsX74c7733nub7ubm5aG1ttT9vbW1FXl6eJcd2B3fzO6w8rq/O2eqc\nFiPcOQf1Nnv27EFubq5HxzF77ISEBPv/48aNwy9+8QscPnwYffv2dfs4vpLtp59+2u0x6KH+DePj\n4/HrX//a9P7MjNVKefOVPPlLVlwd1wrZNzPOoDc3vfPOO3jiiSewdOlSxMbGam4zdOhQfPfdd2hp\naUFXVxdeeeUVTJw40dJx6NnxfB0Dr3dcX52zP3Na3DmHiRMn4sUXXwQANDc3Izk52W6e8AZ3jn3g\nwAH7979hwwYQkVcXvRp/yLYv5NZKmbRS3nwlT4GSFV/IvqlxeuTmDgAlJSVUUFBgD9n6+c9/TkRE\ne/fupfr6evt2y5cvp9LSUiouLqY5c+ZYcux//etflJeXR7GxsZSZmUlXXHGF07G3b99OVVVVVFVV\nReXl5ZYc253jEvnmnNvb2+myyy5zCkn01TlrncO8efNo3rx59m1uu+02Ki4upsrKSsNoHauP/cwz\nz1B5eTlVVVXR8OHDad26dZYdm8h3su0LufWVTFotb76SJ1/IypQpUyg7O5uio6MpLy+Pnn/+ea/H\n6mqfZsYZkk2HJBKJROIfgt7cJJFIJJLAIZWERCKRSHSRSkIikUgkukglIZFIJBJdpJLoAbz55pt4\n7LHHAj0MicRypGz7HhndJJFIJBJd5EoixGlpacGAAQNw4403oqysDNdddx1WrlyJiy++GKWlpfjk\nk0+wYMECzJo1CwAwffp0/PKXv8TFF1+M4uJivPbaawE+A4lEGynbwYFUEmHA9u3bcdddd+Gbb77B\nt99+i1deeQVr1qzBk08+iTlz5jjVe2lra8OaNWvw1ltv2RtASSTBiJTtwBMUtZsk3tGvXz+Ul5cD\nAMrLyzFmzBgAwODBg9HS0uKwrc1ms5c+GDhwoCVltyUSXyFlO/DIlUQY0KtXL/v/ERERiImJsf/f\n3d3ttD1/H/BtvwSJxFukbAceqSQkEolEootUEmGA2i6rVXNefE3vf4kk2JCyHXhkCKxEIpFIdJEr\nCYlEIpHoIpWERCKRSHSRSkIikUgkukglIZFIJBJdpJKQSCQSiS5SSUgkEolEl/8PR+csKToxSkAA\nAAAASUVORK5CYII=\n"
|
|
}
|
|
],
|
|
"prompt_number": 2
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Min-max and rainflow cycle distributions\n",
|
|
"-------------------------------------------"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"collapsed": false,
|
|
"input": [
|
|
"import wafo.misc as wm\n",
|
|
"ampmM_sea = mM.amplitudes()\n",
|
|
"ampRFC_sea = mM_rfc.amplitudes()\n",
|
|
"clf()\n",
|
|
"subplot(121) \n",
|
|
"wm.plot_histgrm(ampmM_sea,25)\n",
|
|
"ylim = gca().get_ylim()\n",
|
|
"title('min-max amplitude distribution')\n",
|
|
"subplot(122)\n",
|
|
"wm.plot_histgrm(ampRFC_sea,25)\n",
|
|
"gca().set_ylim(ylim)\n",
|
|
"title('Rainflow amplitude distribution')\n",
|
|
"show()"
|
|
],
|
|
"language": "python",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"output_type": "display_data",
|
|
"png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEICAYAAABfz4NwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4U2W+B/Dv6aIsTVe6QFNIoS0lBdpqhYKWBqFsaocR\nplCxlE3vdUaujN5RGUAKii0z4EUddRwvQhWFiijlsnSYEYK4QFUWpR2mHehGN5a20Ard3/sH4UzT\nJm3aJF2/n+fJ8yQ5J7/3zTm/k99Z3iSSEEKAiIj6PJuu7gAREXUPLAhERASABYGIiHRYEIiICAAL\nAhER6bAgEBERACsWhPz8fCgUCnBUq3GLFi3CmjVrAADHjx9HYGCgxWJrtVr4+PhYJNb27dsREREh\nP1YoFMjNzbVI7MTERDzxxBMAgNzcXNjY2KCxsdEisTszBz/66CNMnz7d5PlXr14Nd3d3DBkyBHl5\neRZ9311NpVLhyJEjAIBXX31VXr+WkJCQgLi4OIvEsub2N2vWLHz44YcAWm4/5mpvrrWH1QrC0KFD\nUVlZCUmSrNVEjydJkrx8IiIicP78eXla042qu6msrIRKpWp1HlML0sqVK/Hee+9ZpF/Nl1l7c1Cl\nUmHAgAFQKBTw8vJCXFwcbty4YdJrFyxYgL/+9a8mzZufn4/XXnsN58+fR1FRUa/baWq6vH//+9/L\n69cSBd+SnyetbX/GmFqQDh48aJHCZWiZtSfX2ounjLqYsQ8DSZJ63QdFcw0NDRaNZ+4ykyQJ+/fv\nR2VlJc6ePYuffvoJr7zyigV7eFt+fj7c3Nzg5uZm8dg9QXfKa0v3RQhhlffXWcusXQVBpVJh06ZN\nGDt2LBQKBZYuXYrS0lLMnDkTTk5OiIqKQkVFBYCWlU2j0eCll17CAw88AEdHR0yfPh3Xrl0z2pZG\no8GaNWtw//33Q6FQIDo6GlevXsWCBQvg5OSEcePGIS8vT57/mWeewdChQ+Hk5ISwsDB89dVX8rSH\nHnoI//3f/y0/nj9/PpYuXWqw3fT0dEyYMAEuLi4YMmQIli9fjrq6un8vMBsbvPPOO/D394ejoyNe\neuklXLhwARMmTICzszPmz58vz6/VaqFUKpGYmAh3d3f4+vri448/Nthu0z3quLg45Ofn45FHHoFC\nocCmTZsM7nGrVCp88cUXAIBbt25h0aJFcHV1RVBQEL777ju9eYuKijBnzhx4eHhg+PDhePPNN40u\n+2vXriE6OhpOTk4YP348Lly4oDfdxsYGFy9eBHB7TygoKAiOjo5QKpV47bXXcPPmTcycORNFRUVQ\nKBRwdHREcXExEhISMHfuXMTFxcHJyQnbt283uMe1detWeHt7Y8iQIdi8ebP8fNNDfFOWWfMcLCoq\nQnR0NNzc3ODv74///d//lWMlJCTg8uXLSEpKgqOjI6ZMmYLg4GBkZGTI8yQlJcHPzw+Ojo4ICgrC\n3r175WnNTwvY2Njg3XffRUBAAFxcXPD0008DAP7+979j2rRp8rJZsmRJi71eY/2srq5G//79UVZW\nBgDYsGED7O3tUVVVBQBYs2YNfvvb3xpcp9u2bYNarYajoyNGjBiBv/zlL3rLUalU4o9//CM8PDww\nZMgQ7N27FwcPHkRAQADc3NyQlJSkt6zmzp2L+fPnw9HREffeey9+/PFHg+02Xb+TJk0CADg7O8PR\n0REnTpxosf6br7OcnBxERkbC0dER06ZNw9WrV/XinzhxAhMnToSLiwtCQkJw7Ngxg/0AgNOnT+Oe\ne+6Bo6Mj5s+fj+rqar1l0HT72rhxI5RKJRwdHREYGIgjR44gLS0NiYmJSElJgUKhQGhoKIDbn1Wr\nV6/G/fffDwcHB1y8eBEajQZbt26V4wkhsHz5cjg7O2PUqFF6R7JNt2NTllnzXPvmm29w3333wdnZ\nGePGjcO3334rT2vv5y5EO6hUKjFhwgRx+fJlUVhYKDw8PERoaKg4c+aMqK6uFg8++KBYt26dEEKI\nnJwcIUmSaGhoEEIIERkZKfz8/ER2dra4deuW0Gg04sUXXzTaVmRkpPD39xcXL14U169fF2q1Wvj5\n+YkvvvhC1NfXi4ULF4rFixfL8+/YsUOUlZWJhoYGsXnzZuHl5SWqq6uFEEKUlJQIDw8PceTIEbFj\nxw4xYsQIUVVVZbDdH374QZw8eVI0NDSI3NxcMWrUKLFlyxZ5uiRJYvbs2aKyslJkZGSIu+66S0ye\nPFnk5OTI/UxOThZCCHH06FFhZ2cnnnvuOVFbWyuOHTsmBg4cKLKysoQQQixatEisXr1anlepVOot\n6y+++EJ+3Hx683leeOEFMWnSJFFeXi4KCgpEUFCQ8PHxEUII0dDQIO655x7x8ssvi7q6OnHx4kUx\nfPhw8de//tXgMpg3b56YN2+euHnzpjh37pzw9vYWEREResvgwoULQgghvLy8xFdffSWEEKKiokKc\nOnVKCCGEVqtt0d+1a9cKe3t7kZqaKoQQ4tatWyIhIUE8/vjjQoh/58xjjz0mbt68KX766Sfh7u4u\n/v73v8vLa82aNUaXSfNl1jwHIyIixG9+8xtRU1Mjzpw5I9zd3cWRI0fkvkmSJBITE0VjY6P4zW9+\nIwYMGCDnsxBC7N69WxQXFwshhEhJSREDBw4UJSUlQgghtm3bJh544AG9ZfTII4+I69evi/z8fOHu\n7i7S0tIMLpv29HPSpEliz549QgghoqKihJ+fnzh06JD8ur179xpcpwcOHBAXL14UQghx7NgxMWDA\nAHld3cnTl19+WdTX14v33ntPuLm5iccee0xUVVWJjIwM0b9/f5Gbm6u3Hvfs2SPq6+vFpk2bhK+v\nr6ivr2+xHpqu39zcXL332Xy6oWURHh4ubz9ffvmlUCgUIi4uTgghxKVLl4Sbm5v8/v/2t78JNzc3\nceXKlRbvv6amRgwdOlRs2bJF1NfXi08//VTY29vL+dQ0l86fPy98fHzkdZ2Xlyfne0JCgtz+HZGR\nkWLYsGEiMzNTNDQ0iLq6OqHRaMTWrVuFELdzw87OTm47JSVFODk5ifLy8hbLy5Rl1jTXrl27Jpyd\nncWOHTtEQ0OD2Llzp3BxcRFlZWVy39rzudvuU0bLly+XL4ZFRERgwoQJCA4Oxt13341f/vKXOH36\ntMHXSZKExYsXw8/PD/369UNMTAzOnDljtJ078/v6+sLR0REzZ85EQEAAHnzwQdja2uJXv/qVXlsL\nFiyAi4sLbGxs8Oyzz6KmpgZZWVkAAE9PT7zzzjtYuHAhVqxYgQ8++AADBw402O4999yDcePGwcbG\nBsOGDcOTTz7ZYq/j+eefh4ODA9RqNcaMGYOZM2dCpVLJ/Wy+DF5++WXY29tj0qRJeOihh5CSkmLS\nsm6P3bt3Y9WqVXB2doZSqcQzzzwjH2Z+9913uHr1KlavXg07Ozv4+vpi2bJl2LVrV4s4DQ0N+Oyz\nz7B+/Xr0798fQUFBiI+PN3rIetdddyEjIwM3btyAk5OTvNdkbP6JEyciOjoaANCvXz+D861duxb9\n+/fH6NGjsXjxYuzcuVOeZixuWwoKCvDNN99g48aNuOuuuxAcHIxly5bhgw8+kOe5++67sWHDBjg5\nOeHtt99GdXU1Vq9eLU+fO3cuvLy8AAAxMTHw9/fHyZMnjbb54osvwtHRET4+Ppg8ebKc7629h7b6\nGRkZiWPHjqGhoQE//fQT/uu//gvHjh1DdXU1vv/+e3mPsrlZs2bB19cXwO29zmnTpuH48ePydHt7\ne6xatQq2traYN28eysrKsGLFCgwcOBBqtRpqtRpnz56V5w8LC8Ojjz4KW1tbPPvss6iursaJEyda\ntNv0vRp6360ti/z8fHz//ffy9hMREYFHHnlEnr5jxw7MmjULM2bMAABMnToVYWFhOHjwYItYJ06c\nQH19PZ555hnY2tpizpw5uO+++wy2a2tri5qaGmRkZKCurg5Dhw7F8OHD5f4277MkSVi0aBFGjRoF\nGxsb2NnZtYjp4eEhtx0TE4ORI0fiwIEDBttva5k1deDAAYwcORILFiyAjY0N5s+fj8DAQOzbt0/u\nW3s+d9tdEDw9PeX7/fv313vcr18/+fDVkDsb053X3pn3P//zP6FQKKBQKPQOTZvH9vDwMNrWpk2b\noFar4ezsDBcXF1y/fl3v8PLhhx9GQ0MDAgMDMXHiRKN9zMrKwsMPP4zBgwfDyckJq1atanGI1Z5l\n4OLigv79+8uPhw0bhuLiYqPtd1RRUZHeIe/QoUPl+3l5eSgqKoKLi4t8S0xMxOXLl1vEuXLlCurr\n643Gam7Pnj04ePAgVCoVNBqNwQ+FppRKZZvvpXnbRUVFbb6mLUVFRXB1ddXbERg6dCgKCwvlx7a2\ntkhNTcWNGzewc+dONDY2Ij09XZ7+wQcfIDQ0VF6G586da/Xwu2m+DxgwoNVtw9R+RkZGQqvV4tSp\nUxgzZgymTp2KY8eO4eTJk/Dz84OLi4vBuIcOHUJ4eDjc3Nzg4uKCgwcP6vXdzc1NPnV1J1+b53nT\n/jddj5IkQalUWmQ9NXUnZ5tvP3c+JPPy8rB79269vP76669RUlJiMJa3t7fec8OGDTPYrp+fH7Zs\n2YKEhAR4enoiNja2zW22rQEUhtq2VF433z6bxzb2uWuI2ReVO7rH1tSf//xnVFZWorKyEi+++KLB\neVobXXD8+HH88Y9/xO7du1FRUYHy8nI4OTnp9W3VqlVQq9UoLi42uGd8x1NPPQW1Wo1//etfuH79\nOjZs2NCuURHN+1leXo6bN2/Kj/Py8jBkyJA231fz5wcOHKgXp6GhAVeuXJEfDx48GPn5+fLjpvd9\nfHzg6+uL8vJy+Xbjxg3s37+/Rbvu7u6ws7MzGqu5sLAw7N27F1euXMHs2bMRExNj9H01HdVh7H02\nby8/P1/emJovg+Ybfms5MmTIEJSVleltDPn5+UYL1Pjx4wHcHgUF3F5vTz75JN566y2UlZWhvLwc\no0ePblf+mzJCpq1+TpgwAf/85z/x+eefQ6PRYNSoUcjPz8fBgweh0WgMxqypqcGcOXPw/PPP4/Ll\nyygvL8esWbPM2nYLCgrk+42Njbh06ZJeXhti6P07ODgYXaeDBw82uP3ciTN06FDExcXp5XVlZSWe\nf/75Fu0MHjxYr/jfiWVMbGwsjh8/Lrf3wgsvGH0PrT1/h6G27yyvgQMH4ueff5anNV0GbcX19vZu\n8T7y8vJaFCBTdeooo/YmoKmHTpWVlbCzs8OgQYNQW1uL9evX6w0X/PLLL7F9+3Z8+OGH2L59O5Yv\nX260OldVVUGhUGDAgAE4f/483nnnHbP7uXbtWtTV1eH48eM4cOAAfvWrX8nzGntfnp6eehdzAwIC\nUF1djYMHD6Kurg6vvPIKampq5OkxMTFITExERUUFLl26pHfReNy4cVAoFPjDH/6AW7duoaGhAefO\nncP333/fol1bW1s8+uijSEhIwK1bt5CZmYnk5GSDfayrq8NHH32E69evw9bWFgqFAra2tnL/r127\nprceTD1l8Morr+DWrVvIyMjA9u3bMW/ePABASEgIDh48iPLycpSUlGDLli2tLrOmfHx8MHHiRKxc\nuRI1NTX48ccf8f777+Pxxx83OP8d6enpOHnyJH7++WdIkoRBgwahsbER27Ztw7lz51p9bfP3aUr+\nt9XPAQMG4N5778Vbb72FyMhIALdPw/35z3+WHzdXW1uL2tpaDBo0CDY2Njh06BAOHz5sct8N+eGH\nH/D555+jvr4eW7ZsQb9+/RAeHt7qa9zd3WFjY6O3jkJCQvDll1+ioKAA169fR2Jiojxt2LBhCAsL\nk7efr776Sm8n5vHHH8f//d//4fDhw2hoaEB1dTW0Wm2LD1/g9jKys7PDG2+8gbq6Onz22WctBl7c\nkZWVhSNHjqCmpgZ33303+vXrJ+e1l5cXcnNzW6zLttbt5cuX5bZ3796N8+fPY9asWfIy2LVrF+rr\n6/H9999jz549ciEwtMyamjlzJrKysrBz507U19cjJSUF58+fx8MPP2xy35oyuyA0rWDN9wBb2xs0\ntLfYnthNp8+YMQMzZsxAQEAAVCoV+vfvLx9G3bhxA/Hx8XjrrbcwePBgPPDAA1i6dCmWLFlisM1N\nmzbh448/hqOjI5588knMnz+/1ffUVj+9vLzkEUtxcXHyyBND8za9v3LlSrzyyitwcXHBa6+9Jp/X\nXrZsGZRKJRwcHPQOU9euXYthw4bB19cXM2bMwMKFC+V4tra22L9/P86cOYPhw4fD3d0dTz75pNEx\n9n/6059QVVUFLy8vLFmypMVImKb3d+zYAV9fXzg5OeEvf/kLPvroIwBAYGAgYmNjMXz4cLi6uqK4\nuNjoOmweOzIyEn5+fpg6dSp+97vfYerUqQBujyQKDg6GSqXCjBkzWqyb5suseV937tyJ3NxcDBky\nBI8++ijWr1+PBx98sMV8d9jY2GDhwoXYuHEj1Go1nnvuOUyYMAFeXl44d+4cHnjggVbfR1vvs/l0\nU/oJ3D5tVF9fj3HjxsmPq6qqjF4/UCgUeOONNxATEwNXV1fs3LkTv/jFL4y2b2x5NJ32i1/8Aikp\nKXB1dcVHH32Ezz77TP7QNPa+BwwYgFWrVuH++++Hi4sL0tPTMXXqVMybNw9jx47Ffffdh0ceeUSv\n7Y8//hgnT56Eq6sr1q9fj/j4eHmaUqlEamoqXn31VXh4eGDo0KHYvHmzwSN6e3t7fPbZZ9i+fTvc\n3NzwySefYM6cOQbfc01NDVauXAl3d3cMHjwYV69elQvVnZ05Nzc3hIWFmby8wsPDkZ2dDXd3d6xZ\nswZ79uyRT++9/PLLuHDhAlxcXJCQkIAFCxbIr226zFxdXXHy5Em9Zerm5ob9+/dj8+bNGDRoEDZt\n2oT9+/fD1dXVYN/a+tyVhCXO+ZBBWq0WcXFxeofXRD3dunXr8K9//Uv+Ji71Hq0eIVRXV2P8+PEI\nCQmBWq2Wz6eWlZUhKioKAQEBmDZtmvzdA+D2TxH4+/sjMDDQ7MNSImthbncc9yF7r1YLQr9+/XD0\n6FGcOXMGP/74I44ePYqvvvoKSUlJiIqKQlZWFqZMmSKPDMrMzERKSgoyMzORlpaGX//6173m91k6\nij/d0T0xtzvOlNO91DO1eQ1hwIABAG5fmGpoaICLiwv27dsnn8uLj4+Xv7GZmpqK2NhY2NvbQ6VS\nwc/PT2/YXl+j0WhaHaFDXYu53TFr167V+/4G9R5tFoTGxkaEhITA09MTkydPRlBQEEpLS+Uxyp6e\nnigtLQVwe0xs02F8SqXS4BV/ou6AuU2kr+VX6pqxsbHBmTNncP36dUyfPh1Hjx7Vm97mVes2RuUQ\nWYMp57ktndvMa+oM1ryGY/KwUycnJzz00EP44Ycf4OnpKX95ori4WP4Gsbe3t96ImkuXLhn9gsSd\ncdmWvK1du7ZHxGRc6/a1vSyZ2z1l2fe0uD2pr9aMa22tFoSrV6/Koyxu3bqFv/3tbwgNDUV0dLT8\nZaXk5GTMnj0bABAdHY1du3ahtrYWOTk5yM7OlsdKE3UnzG2illo9ZVRcXIz4+Hg0NjaisbERcXFx\nmDJlCkJDQxETE4OtW7dCpVLhk08+AQCo1WrExMRArVbDzs4Ob7/9Ng+jqVtibhMZILqAtZo9evRo\nj4jJuNaLKYT18qur2u1J69RacXtSX60Z19q53SXfVO4L/wZGXaer8ot5TdZm7RzjX2gSEREAFgQi\nItJhQSAiIgAsCEREpMOCQEREALqwIEhSy1uT/3QgIqJO1uZvGVmLoZFT/J4PEVHX4SkjIiICwIJA\nREQ6LAhERASABYGIiHRYEIiICAALAhER6bAgEBERABYEIiLSYUEgIiIALAhERKTDgkBERABYEIiI\nSIcFgYiIALAgEBGRDgsCEREBYEEgIiIdFgQiIgLAgkBERDosCEREBIAFgYiIdFotCAUFBZg8eTKC\ngoIwevRovPHGGwCAhIQEKJVKhIaGIjQ0FIcOHZJfk5iYCH9/fwQGBuLw4cPW7T1RBzG3iVqShBDC\n2MSSkhKUlJQgJCQEVVVVuPfee7F371588sknUCgUePbZZ/Xmz8zMxGOPPYbvvvsOhYWFmDp1KrKy\nsmBjo193JEmCoWYlCTDeGyLTGMuvpqyR26a0S2QOa+dYq0cIXl5eCAkJAQA4ODhg1KhRKCwsBACD\nnUpNTUVsbCzs7e2hUqng5+eH9PR0K3SbyDzMbaKWTL6GkJubi9OnTyM8PBwA8OabbyI4OBhLly5F\nRUUFAKCoqAhKpVJ+jVKplDcyou6KuU10m50pM1VVVWHu3Ll4/fXX4eDggKeeegovvfQSAGDNmjV4\n7rnnsHXrVoOvlSTJ4PMJCQnyfY1GA41G076eE+lotVpotdoOvdbSuc28JksyJ7c7RLShtrZWTJs2\nTfzP//yPwek5OTli9OjRQgghEhMTRWJiojxt+vTp4sSJEy1eY6zZtntD1DYT0loIYfncNrVdoo6y\ndo61espICIGlS5dCrVZjxYoV8vPFxcXy/c8//xxjxowBAERHR2PXrl2ora1FTk4OsrOzMW7cOCuU\nMSLzMLeJWmr1lNHXX3+NHTt2YOzYsQgNDQUAvPrqq9i5cyfOnDkDSZLg6+uLd999FwCgVqsRExMD\ntVoNOzs7vP3220ZPGRF1JeY2UUutDju1WqMcdkpW1FXDPznslKytS4edEhFR38GCQEREAFgQiIhI\nhwWBiIgAsCAQEZEOCwIREQFgQSAiIh0WBCIiAsCCQEREOiwIREQEgAWBiIh0WBCIiAgACwIREemw\nIBAREQAWBCIi0mFBICIiACwIRESkw4JAREQAWBCIiEiHBYGIiACwIBARkQ4LAhERAWBBICIiHRYE\nIiICwIJAREQ6LAhERASABYGIiHRYEIiICAALAhER6bRaEAoKCjB58mQEBQVh9OjReOONNwAAZWVl\niIqKQkBAAKZNm4aKigr5NYmJifD390dgYCAOHz5s3d4TdRBzm8gA0Yri4mJx+vRpIYQQlZWVIiAg\nQGRmZorf/e53YuPGjUIIIZKSksQLL7wghBAiIyNDBAcHi9raWpGTkyNGjBghGhoaWsQ11mzrvSEy\nTRtpLYSwTm6b0i6ROaydY60eIXh5eSEkJAQA4ODggFGjRqGwsBD79u1DfHw8ACA+Ph579+4FAKSm\npiI2Nhb29vZQqVTw8/NDenq6FcsZUccwt4lasjN1xtzcXJw+fRrjx49HaWkpPD09AQCenp4oLS0F\nABQVFSE8PFx+jVKpRGFhocF4CQkJ8n2NRgONRtOB7hMBWq0WWq22w6+3ZG4zr8mSzM3t9jKpIFRV\nVWHOnDl4/fXXoVAo9KZJkgRJkoy+1ti0phsOkTmaf/CuW7fO5NdaOreZ12RJ5uR2R7Q5yqiurg5z\n5sxBXFwcZs+eDeD2nlNJSQkAoLi4GB4eHgAAb29vFBQUyK+9dOkSvL29rdFvIrMxt4n0tVoQhBBY\nunQp1Go1VqxYIT8fHR2N5ORkAEBycrK8MUVHR2PXrl2ora1FTk4OsrOzMW7cOCt2n6hjmNtEBrR2\nxfn48eNCkiQRHBwsQkJCREhIiDh06JC4du2amDJlivD39xdRUVGivLxcfs2GDRvEiBEjxMiRI0Va\nWprBuMaa5SANsoQ20loIYZ3cNqVdInNYO8ckXSOdSpIkGGpWkoDO7w31Nsbyq7e2S32HtXOM31Qm\nIiIALAhERKTDgkBERABYEIiISIcFgYiIALAgEBGRDgsCEREBYEEgIiIdFgQiIgLAgkBERDosCERE\nBIAFgYiIdFgQiIgIAAsCERHpsCAQEREAFgQiItJhQSAiIgAsCEREpMOCQEREAFgQiIhIhwWBiIgA\nsCAQEZEOCwIREQFgQSAiIh0WBCIiAsCCQEREOiwIREQEgAWBiIh02iwIS5YsgaenJ8aMGSM/l5CQ\nAKVSidDQUISGhuLQoUPytMTERPj7+yMwMBCHDx+2Tq+JzMS8JmpJEkKI1mY4fvw4HBwcsHDhQvz0\n008AgHXr1kGhUODZZ5/VmzczMxOPPfYYvvvuOxQWFmLq1KnIysqCjY1+3ZEkCYaalSSg9d4Qtc1Y\nfjXVmXlNZCnWzrE2jxAiIiLg4uLS4nlDnUpNTUVsbCzs7e2hUqng5+eH9PR0y/SUyIKY10Qt2XX0\nhW+++SY++OADhIWFYfPmzXB2dkZRURHCw8PleZRKJQoLCw2+PiEhQb6v0Wig0Wg62hXq47RaLbRa\nrUViMa+pO7FkbptEmCAnJ0eMHj1aflxaWioaGxtFY2OjWLVqlViyZIkQQoinn35a7NixQ55v6dKl\nYs+ePS3iGWvWtN4Qtc7EtO60vCayFGvnWIdGGXl4eECSJEiShGXLlsmHz97e3igoKJDnu3TpEry9\nvc2vWkSdgHlNfV2HCkJxcbF8//PPP5dHakRHR2PXrl2ora1FTk4OsrOzMW7cOMv0lMjKmNfU17V5\nDSE2NhbHjh3D1atX4ePjg3Xr1kGr1eLMmTOQJAm+vr549913AQBqtRoxMTFQq9Wws7PD22+/DUmS\nrP4miNqLeU3UUpvDTq3SKIedkhV11fBPDjsla+vyYadERNQ3sCAQERGAblgQJKnlzdW1q3tFRNT7\ndfiLadZi6PQYr98REVlftztCICKirsGCQEREAFgQiIhIhwWBiIgAsCAQEZEOCwIREQFgQSAiIh0W\nBCIiAsCCQEREOiwIREQEgAWBiIh0WBCIiAgACwIREemwIBAREQAWBCIi0mFBICIiACwIRESkw4JA\nREQAWBCIiEiHBYGIiACwIBARkQ4LAhERAWBBICIiHRYEIiICYEJBWLJkCTw9PTFmzBj5ubKyMkRF\nRSEgIADTpk1DRUWFPC0xMRH+/v4IDAzE4cOHrdNrIjMxr4laarMgLF68GGlpaXrPJSUlISoqCllZ\nWZgyZQqSkpIAAJmZmUhJSUFmZibS0tLw61//Go2NjdbpOZEZmNdELbVZECIiIuDi4qL33L59+xAf\nHw8AiI+Px969ewEAqampiI2Nhb29PVQqFfz8/JCenm6FbhOZh3lN1JJdR15UWloKT09PAICnpydK\nS0sBAEXKToxdAAALYklEQVRFRQgPD5fnUyqVKCwsNBgjISFBvq/RaKDRaDrSFSJotVpotVqz4zCv\nqbuxVG6bqkMFoSlJkiBJUqvTDWm64RCZo/kH77p168yOybym7sAaud2aDo0y8vT0RElJCQCguLgY\nHh4eAABvb28UFBTI8126dAne3t4W6CYgSS1vrq4WCU0EoGvymqg76VBBiI6ORnJyMgAgOTkZs2fP\nlp/ftWsXamtrkZOTg+zsbIwbN84iHRWi5a283CKhiQB0TV4TdSuiDfPnzxeDBw8W9vb2QqlUivff\nf19cu3ZNTJkyRfj7+4uoqChRXl4uz79hwwYxYsQIMXLkSJGWlmYwprFmjfWmvc9T32ZCWndqXhNZ\nirVzTNI10qkkSYKhZiXp9p6/uc9T32Ysv3pru9R3WDvH+E1lIiICwIJAREQ6LAhERASABYGIiHRY\nEIiICAALAhER6bAgEBERABYEIiLSYUEgIiIALAhERKTDgkBERABYEIiISIcFgYiIALAgEBGRDgsC\nEREBYEEgIiIdFgTc/m9m/mczEfV1dl3dge6gvNz4P7IREfUVPEIgIiIAvaAg8FQPEZFl9PhTRjzV\nQ0RkGT3+CIGIiCyDBYGIiACwIBARkQ4LAhERAWBBICIiHRYEIiICwIJAREQ6Zn0PQaVSwdHREba2\ntrC3t0d6ejrKysowb9485OXlQaVS4ZNPPoGzs7Ol+msWV9fbP1NB1JqeltdElmLWEYIkSdBqtTh9\n+jTS09MBAElJSYiKikJWVhamTJmCpKQki3TUEu78ZlHzG1FTPS2viSzF7FNGotkn6r59+xAfHw8A\niI+Px969e81tgqjTMa+pLzL7CGHq1KkICwvDe++9BwAoLS2Fp6cnAMDT0xOlpaXm97IL8beS+p6+\nkNdEhph1DeHrr7/G4MGDceXKFURFRSEwMFBvuiRJkIz8sFBCQoJ8X6PRQKPRmNMVq+FvJXV/Wq0W\nWq3WYvH6Ql5Tz2Dp3G6LJJofG3fQunXr4ODggPfeew9arRZeXl4oLi7G5MmTcf78ef1GJanFIfnt\n541/APeE56l7MJZfHWGJvCayFGvnWIdPGd28eROVlZUAgJ9//hmHDx/GmDFjEB0djeTkZABAcnIy\nZs+ebZmeEnUC5jX1ZR0+QsjJycEvf/lLAEB9fT0WLFiAlStXoqysDDExMcjPzzc6PK83HCEY4uIC\nlJUZnkadx5y9KGvkNZGlWDvHLHbKqF2NdkJBMIanknq/rvpgZkEga7N2jvX4P8gxhheDiYjahz9d\nQUREAFgQiIhIhwWBiIgAsCAQ9XqurvzGPZmm115UJqLb7vyoY3McZEHN8QiBqBcxdDRg7ut5JNF3\n8AiBqBcxdDTQnqJg7PWGYvCLmL0PjxCIqE2G/kfEGn82xesdXYsFoQfhxkLdXXtOORma19ifWPGf\nDjsHTxn1ILw4SN2Nodwz9ZSTsXmp6/AIoRO0d8/e2PxElmZujpn6d7T869qegUcInaC1PXtT95zu\nzE9kSdxDp6Z4hNDFrLnnxGsOPQ+HfVJX4hFCL8ZrDj2PucNGiczBgmBh3HjJGphXpi0DfjfCPCwI\nFsY9crIGU/+QqTfnmqH32pfef2fgNQQiIgLAI4Reg3tGRGQuFoRegqeqiMhcPGVERL0Kh1p3HI8Q\niKhX4dFyx/EIgWT8IhtR38YjhD6KP5lBfQ2/x9A2FoQ+qr0f/PyDFOrp+D2GtrEgkEl45EDU+/Ea\nAhERAWBBICLqkN44CMMqBSEtLQ2BgYHw9/fHxo0brdGEQVqttkfE7E1xzfvjH22P2oC6Kq8BbY+K\na50ctEZMw301Nadb+7tPa22H1mbxgtDQ0ICnn34aaWlpyMzMxM6dO/GPf/zD0s0YxILQ+XHb8/+3\nzTegtWu1Peb/crsyr1kQgM7sq7Gcbs+/y02erO2RRw0WLwjp6enw8/ODSqWCvb095s+fj9TUVEs3\nQ91ce/8C1BJ/MWrNjY55Te35I6u1a9suKO25dVZBsfgoo8LCQvj4+MiPlUolTp48aelmqJtr76ik\n7v4Xo8xrMpcpw16NPd9pI/qEhX366adi2bJl8uMPP/xQPP3003rzAOCNN6vemNe89dabNVn8CMHb\n2xsFBQXy44KCAiiVSr15hCX/OJioEzCvqS+w+DWEsLAwZGdnIzc3F7W1tUhJSUF0dLSlmyHqVMxr\n6gssfoRgZ2eHP/3pT5g+fToaGhqwdOlSjBo1ytLNEHUq5jX1CdY8H3Xo0CExcuRI4efnJ5KSkgzO\ns3z5cuHn5yfGjh0rTp06ZXbMHTt2iLFjx4oxY8aIiRMnirNnz1qsr0IIkZ6eLmxtbcWePXssFvfo\n0aMiJCREBAUFicjISLNjXrlyRUyfPl0EBweLoKAgsW3btjZjLl68WHh4eIjRo0cbnae968qUuB1d\nX6b0V4j2ry9TWCOvTYnbnXLbGnltSlzm9r9ZI7etVhDq6+vFiBEjRE5OjqitrRXBwcEiMzNTb54D\nBw6ImTNnCiGEOHHihBg/frzZMb/55htRUVEhhLidXG3FNDXunfkmT54sHnroIfHpp59aJG55eblQ\nq9WioKBACHE74c2NuXbtWvHiiy/K8VxdXUVdXV2rcb/88ktx6tQpo0nY3nVlatyOrC9T4grR/vVl\nCmvktalxu0tuWyOvTY3L3L7NGrkthBBW++kKU8Zt79u3D/Hx8QCA8ePHo6KiAqWlpWbFnDBhApyc\nnOSYly5dskhfAeDNN9/E3Llz4e7u3mZMU+N+/PHHmDNnjnyBctCgQWbHHDx4MG7cuAEAuHHjBtzc\n3GBn1/rZwYiICLi4uBid3t51ZWrcjqwvU+IC7V9fprBGXpsat7vktjXy2tS4zO3brJHbgBV/y8jQ\nuO3CwsI252ltoZkSs6mtW7di1qxZFutramoqnnrqKQCAZMLAYFPiZmdno6ysDJMnT0ZYWBg+/PBD\ns2M+8cQTyMjIwJAhQxAcHIzXX3+9zb525L2YmuCmMnV9maIj68vUuJbOa1PjNtWVuW2NvDY1LnPb\nerkNWPHnr03tpGg2VK+117XnjR89ehTvv/8+vv766zbnNSXuihUrkJSUBEmSIG6farNI3Lq6Opw6\ndQpffPEFbt68iQkTJiA8PBz+/v4djvnqq68iJCQEWq0WFy5cQFRUFM6ePQuFQtHma1vTnnXVXu1Z\nX6boyPoyhTXyuj1xga7PbWvktalxmdvWy23AigXBlHHbzee5dOkSvL29zYoJAD/++COeeOIJpKWl\ntXnoZWrcH374AfPnzwcAXL16FYcOHYK9vX2rQw9Nievj44NBgwahf//+6N+/PyZNmoSzZ88a3XBM\nifnNN99g1apVAIARI0bA19cX//znPxEWFtbaYmhVe9dVe7R3fZmiI+vLFNbIa1PjAt0jt62R16bG\nZW5bL7cBWG+UUV1dnRg+fLjIyckRNTU1bV58+/bbb9u86GJKzLy8PDFixAjx7bffWrSvTS1atMik\nK/umxP3HP/4hpkyZIurr68XPP/8sRo8eLTIyMsyK+dvf/lYkJCQIIYQoKSkR3t7e4tq1a232Nycn\nx6QLb6asK1PjdmR9mRK3KVPXlymskdemxu0uuW2NvDY1LnNbnyVzWwgrfFP5DmPjtt99910AwH/8\nx39g1qxZOHjwIPz8/DBw4EBs27bN7Jjr169HeXm5fH7N3t4e6enpZse11jIIDAzEjBkzMHbsWNjY\n2OCJJ56AWq02K+bvf/97LF68GMHBwWhsbMQf/vAHuLbx61ixsbE4duwYrl69Ch8fH6xbtw51dXVy\nzPauK1PjdmR9mRLXWqyR16bG7S65bY28NjUuc9t6uQ0AkhD8vj0REfEf04iISIcFgYiIALAgEBGR\nDgsCEREBYEEgIiIdFgQiIgIA/D/Pv8fbekijgAAAAABJRU5ErkJggg==\n"
|
|
}
|
|
],
|
|
"prompt_number": 3
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"collapsed": false,
|
|
"input": [
|
|
"#!#! Section 4.3.3 Simulation of rainflow cycles\n",
|
|
"#!#! Simulation of cycles in a Markov model\n",
|
|
"n=41; param_m=[-1, 1, n]; param_D=[1, n, n];\n",
|
|
"u_markov=levels(param_m);\n",
|
|
"G_markov=mktestmat(param_m,[-0.2, 0.2],0.15,1);\n",
|
|
"T_markov=5000;\n",
|
|
"#xxD_markov=mctpsim({G_markov [,]},T_markov);\n",
|
|
"#xx_markov=[(1:T_markov)' u_markov(xxD_markov)'];\n",
|
|
"#clf\n",
|
|
"#plot(xx_markov(1:50,1),xx_markov(1:50,2))\n",
|
|
"#title('Markov chain of turning points')\n",
|
|
"#wafostamp([],'(ER)')\n",
|
|
"#disp('Block 5'),pause(pstate)\n",
|
|
"#\n",
|
|
"#\n",
|
|
"##!#! Rainflow cycles in a transformed Gaussian model\n",
|
|
"##!#! Hermite transformed wave data and rainflow filtered turning points, h = 0.2.\n",
|
|
"#me = mean(xx_sea(:,2));\n",
|
|
"#sa = std(xx_sea(:,2));\n",
|
|
"#Hm0_sea = 4*sa;\n",
|
|
"#Tp_sea = 1/max(lc_sea(:,2));\n",
|
|
"#spec = jonswap([],[Hm0_sea Tp_sea]);\n",
|
|
"#\n",
|
|
"#[sk, ku] = spec2skew(spec);\n",
|
|
"#spec.tr = hermitetr([],[sa sk ku me]);\n",
|
|
"#param_h = [-1.5 2 51];\n",
|
|
"#spec_norm = spec;\n",
|
|
"#spec_norm.S = spec_norm.S/sa^2;\n",
|
|
"#xx_herm = spec2sdat(spec_norm,[2^15 1],0.1);\n",
|
|
"##! ????? PJ, JR 11-Apr-2001\n",
|
|
"##! NOTE, in the simulation program spec2sdat\n",
|
|
"##!the spectrum must be normalized to variance 1 \n",
|
|
"##! ?????\n",
|
|
"#h = 0.2;\n",
|
|
"#[dtp,u_herm,xx_herm_1]=dat2dtp(param_h,xx_herm,h);\n",
|
|
"#clf\n",
|
|
"#plot(xx_herm(:,1),xx_herm(:,2),'k','LineWidth',2); hold on;\n",
|
|
"#plot(xx_herm_1(:,1),xx_herm_1(:,2),'k--','Linewidth',2);\n",
|
|
"#axis([0 50 -1 1]), hold off;\n",
|
|
"#title('Rainflow filtered wave data')\n",
|
|
"#wafostamp([],'(ER)')\n",
|
|
"#disp('Block 6'),pause(pstate)\n",
|
|
"#\n",
|
|
"##!#! Rainflow cycles and rainflow filtered rainflow cycles in the transformed Gaussian process.\n",
|
|
"#tp_herm=dat2tp(xx_herm);\n",
|
|
"#RFC_herm=tp2rfc(tp_herm);\n",
|
|
"#mM_herm=tp2mm(tp_herm);\n",
|
|
"#h=0.2;\n",
|
|
"#[dtp,u,tp_herm_1]=dat2dtp(param_h,xx_herm,h);\n",
|
|
"#RFC_herm_1 = tp2rfc(tp_herm_1);\n",
|
|
"#clf\n",
|
|
"#subplot(121), ccplot(RFC_herm)\n",
|
|
"#title('h=0')\n",
|
|
"#subplot(122), ccplot(RFC_herm_1)\n",
|
|
"#title('h=0.2')\n",
|
|
"#if (printing==1), print -deps ../bilder/fatigue_8.eps \n",
|
|
"#end\n",
|
|
"#wafostamp([],'(ER)')\n",
|
|
"#disp('Block 7'),pause(pstate)\n",
|
|
"#\n",
|
|
"##!#! Section 4.3.4 Calculating the rainflow matrix\n",
|
|
"#\n",
|
|
"#\n",
|
|
"#Grfc_markov=mctp2rfm({G_markov []});\n",
|
|
"#clf\n",
|
|
"#subplot(121), cmatplot(u_markov,u_markov,G_markov), axis('square')\n",
|
|
"#subplot(122), cmatplot(u_markov,u_markov,Grfc_markov), axis('square')\n",
|
|
"#wafostamp([],'(ER)')\n",
|
|
"#disp('Block 8'),pause(pstate)\n",
|
|
"#\n",
|
|
"##!#! \n",
|
|
"#clf\n",
|
|
"#cmatplot(u_markov,u_markov,{G_markov Grfc_markov},3) \n",
|
|
"#wafostamp([],'(ER)')\n",
|
|
"#disp('Block 9'),pause(pstate)\t\n",
|
|
"#\n",
|
|
"##!#! Min-max-matrix and theoretical rainflow matrix for test Markov sequence.\n",
|
|
"#cmatplot(u_markov,u_markov,{G_markov Grfc_markov},4)\n",
|
|
"#subplot(121), axis('square'), title('min2max transition matrix')\n",
|
|
"#subplot(122), axis('square'), title('Rainflow matrix')\n",
|
|
"#if (printing==1), print -deps ../bilder/fatigue_9.eps \n",
|
|
"#end\n",
|
|
"#wafostamp([],'(ER)')\n",
|
|
"#disp('Block 10'),pause(pstate)\n",
|
|
"#\n",
|
|
"##!#! Observed and theoretical rainflow matrix for test Markov sequence.\n",
|
|
"#n=length(u_markov);\n",
|
|
"#Frfc_markov=dtp2rfm(xxD_markov,n);\n",
|
|
"#clf\n",
|
|
"#cmatplot(u_markov,u_markov,{Frfc_markov Grfc_markov*T_markov/2},3) \n",
|
|
"#subplot(121), axis('square'), title('Observed rainflow matrix')\n",
|
|
"#subplot(122), axis('square'), title('Theoretical rainflow matrix')\n",
|
|
"#if (printing==1), print -deps ../bilder/fatigue_10.eps \n",
|
|
"#end\n",
|
|
"#wafostamp([],'(ER)')\n",
|
|
"#disp('Block 11'),pause(pstate)\n",
|
|
"#\n",
|
|
"##!#! Smoothed observed and calculated rainflow matrix for test Markov sequence.\n",
|
|
"#tp_markov=dat2tp(xx_markov);\n",
|
|
"#RFC_markov=tp2rfc(tp_markov);\n",
|
|
"#h=1;\n",
|
|
"#Frfc_markov_smooth=cc2cmat(param_m,RFC_markov,[],1,h);\n",
|
|
"#clf\n",
|
|
"#cmatplot(u_markov,u_markov,{Frfc_markov_smooth Grfc_markov*T_markov/2},4)\n",
|
|
"#subplot(121), axis('square'), title('Smoothed observed rainflow matrix')\n",
|
|
"#subplot(122), axis('square'), title('Theoretical rainflow matrix')\n",
|
|
"#if (printing==1), print -deps ../bilder/fatigue_11.eps \n",
|
|
"#end\n",
|
|
"#wafostamp([],'(ER)')\n",
|
|
"#disp('Block 12'),pause(pstate)\n",
|
|
"#\n",
|
|
"##!#! Rainflow matrix from spectrum\n",
|
|
"#clf\n",
|
|
"##!GmM3_herm=spec2mmtpdf(spec,[],'Mm',[],[],2);\n",
|
|
"#GmM3_herm=spec2cmat(spec,[],'Mm',[],param_h,2);\n",
|
|
"#pdfplot(GmM3_herm)\n",
|
|
"#wafostamp([],'(ER)')\n",
|
|
"#disp('Block 13'),pause(pstate)\n",
|
|
"#\n",
|
|
"#\n",
|
|
"##!#! Min-max matrix and theoretical rainflow matrix for Hermite-transformed Gaussian waves.\n",
|
|
"#Grfc_herm=mctp2rfm({GmM3_herm.f []});\n",
|
|
"#u_herm=levels(param_h);\n",
|
|
"#clf\n",
|
|
"#cmatplot(u_herm,u_herm,{GmM3_herm.f Grfc_herm},4)\n",
|
|
"#subplot(121), axis('square'), title('min-max matrix')\n",
|
|
"#subplot(122), axis('square'), title('Theoretical rainflow matrix')\n",
|
|
"#if (printing==1), print -deps ../bilder/fatigue_12.eps \n",
|
|
"#end\n",
|
|
"#wafostamp([],'(ER)')\n",
|
|
"#disp('Block 14'),pause(pstate)\n",
|
|
"#\n",
|
|
"##!#!\n",
|
|
"#clf\n",
|
|
"#Grfc_direct_herm=spec2cmat(spec,[],'rfc',[],[],2);\n",
|
|
"#subplot(121), pdfplot(GmM3_herm), axis('square'), hold on\n",
|
|
"#subplot(122), pdfplot(Grfc_direct_herm), axis('square'), hold off\n",
|
|
"#if (printing==1), print -deps ../bilder/fig_mmrfcjfr.eps\n",
|
|
"#end\n",
|
|
"#wafostamp([],'(ER)')\n",
|
|
"#disp('Block 15'),pause(pstate)\n",
|
|
"#\n",
|
|
"#\n",
|
|
"##!#! Observed smoothed and theoretical min-max matrix, \n",
|
|
"##!#! (and observed smoothed and theoretical rainflow matrix for Hermite-transformed Gaussian waves).\n",
|
|
"#tp_herm=dat2tp(xx_herm);\n",
|
|
"#RFC_herm=tp2rfc(tp_herm);\n",
|
|
"#mM_herm=tp2mm(tp_herm);\n",
|
|
"#h=0.2;\n",
|
|
"#FmM_herm_smooth=cc2cmat(param_h,mM_herm,[],1,h);\n",
|
|
"#Frfc_herm_smooth=cc2cmat(param_h,RFC_herm,[],1,h);\n",
|
|
"#T_herm=xx_herm(end,1)-xx_herm(1,1);\n",
|
|
"#clf\n",
|
|
"#cmatplot(u_herm,u_herm,{FmM_herm_smooth GmM3_herm.f*length(mM_herm) ; ...\n",
|
|
"# Frfc_herm_smooth Grfc_herm*length(RFC_herm)},4)\n",
|
|
"#subplot(221), axis('square'), title('Observed smoothed min-max matrix')\n",
|
|
"#subplot(222), axis('square'), title('Theoretical min-max matrix')\n",
|
|
"#subplot(223), axis('square'), title('Observed smoothed rainflow matrix')\n",
|
|
"#subplot(224), axis('square'), title('Theoretical rainflow matrix')\n",
|
|
"#if (printing==1), print -deps ../bilder/fatigue_13.eps \n",
|
|
"#end\n",
|
|
"#wafostamp([],'(ER)')\n",
|
|
"#disp('Block 16'),pause(pstate)\n",
|
|
"# \n",
|
|
"##!#! Section 4.3.5 Simulation from crossings and rainflow structure\n",
|
|
"#\n",
|
|
"##!#! Crossing spectrum (smooth curve) and obtained spectrum (wiggled curve)\n",
|
|
"##!#! for simulated process with irregularity factor 0.25.\n",
|
|
"#clf\n",
|
|
"#cross_herm=dat2lc(xx_herm);\n",
|
|
"#alpha1=0.25;\n",
|
|
"#alpha2=0.75;\n",
|
|
"#xx_herm_sim1=lc2sdat(cross_herm,500,alpha1);\n",
|
|
"#cross_herm_sim1=dat2lc(xx_herm_sim1);\n",
|
|
"#subplot(211)\n",
|
|
"#plot(cross_herm(:,1),cross_herm(:,2)/max(cross_herm(:,2)))\n",
|
|
"#hold on\n",
|
|
"#stairs(cross_herm_sim1(:,1),...\n",
|
|
"# cross_herm_sim1(:,2)/max(cross_herm_sim1(:,2)))\n",
|
|
"#hold off\n",
|
|
"#title('Crossing intensity, \\alpha = 0.25')\n",
|
|
"#subplot(212)\n",
|
|
"#plot(xx_herm_sim1(:,1),xx_herm_sim1(:,2))\n",
|
|
"#title('Simulated load, \\alpha = 0.25')\n",
|
|
"#if (printing==1), print -deps ../bilder/fatigue_14_25.eps \n",
|
|
"#end\n",
|
|
"#wafostamp([],'(ER)')\n",
|
|
"#disp('Block 16'),pause(pstate)\n",
|
|
"#\n",
|
|
"##!#! Crossing spectrum (smooth curve) and obtained spectrum (wiggled curve)\n",
|
|
"##!#! for simulated process with irregularity factor 0.75.\n",
|
|
"#xx_herm_sim2=lc2sdat(cross_herm,500,alpha2);\n",
|
|
"#cross_herm_sim2=dat2lc(xx_herm_sim2);\n",
|
|
"#subplot(211)\n",
|
|
"#plot(cross_herm(:,1),cross_herm(:,2)/max(cross_herm(:,2)))\n",
|
|
"#hold on\n",
|
|
"#stairs(cross_herm_sim2(:,1),...\n",
|
|
"# cross_herm_sim2(:,2)/max(cross_herm_sim2(:,2)))\n",
|
|
"#hold off\n",
|
|
"#title('Crossing intensity, \\alpha = 0.75')\n",
|
|
"#subplot(212)\n",
|
|
"#plot(xx_herm_sim2(:,1),xx_herm_sim2(:,2))\n",
|
|
"#title('Simulated load, \\alpha = 0.75')\n",
|
|
"#if (printing==1), print -deps ../bilder/fatigue_14_75.eps \n",
|
|
"#end\n",
|
|
"#wafostamp([],'(ER)')\n",
|
|
"#disp('Block 17'),pause(pstate)\n",
|
|
"#\n",
|
|
"##!#! Section 4.4 Fatigue damage and fatigue life distribution\n",
|
|
"##!#! Section 4.4.1 Introduction\n",
|
|
"#beta=3.2; gam=5.5E-10; T_sea=xx_sea(end,1)-xx_sea(1,1);\n",
|
|
"#d_beta=cc2dam(RFC_sea,beta)/T_sea;\n",
|
|
"#time_fail=1/gam/d_beta/3600 #!in hours of the specific storm\n",
|
|
"#disp('Block 18'),pause(pstate)\n",
|
|
"#\n",
|
|
"##!#! Section 4.4.2 Level crossings\n",
|
|
"##!#! Crossing intensity as calculated from the Markov matrix (solid curve) and from the observed rainflow matrix (dashed curve).\n",
|
|
"#clf\n",
|
|
"#mu_markov=cmat2lc(param_m,Grfc_markov);\n",
|
|
"#muObs_markov=cmat2lc(param_m,Frfc_markov/(T_markov/2));\n",
|
|
"#clf\n",
|
|
"#plot(mu_markov(:,1),mu_markov(:,2),muObs_markov(:,1),muObs_markov(:,2),'--')\n",
|
|
"#title('Theoretical and observed crossing intensity ')\n",
|
|
"#if (printing==1), print -deps ../bilder/fatigue_15.eps \n",
|
|
"#end\n",
|
|
"#wafostamp([],'(ER)')\n",
|
|
"#disp('Block 19'),pause(pstate)\n",
|
|
"#\n",
|
|
"##!#! Section 4.4.3 Damage\n",
|
|
"##!#! Distribution of damage from different RFC cycles, from calculated theoretical and from observed rainflow matrix.\n",
|
|
"#beta = 4;\n",
|
|
"#Dam_markov = cmat2dam(param_m,Grfc_markov,beta)\n",
|
|
"#DamObs1_markov = cc2dam(RFC_markov,beta)/(T_markov/2)\n",
|
|
"#DamObs2_markov = cmat2dam(param_m,Frfc_markov,beta)/(T_markov/2)\n",
|
|
"#disp('Block 20'),pause(pstate)\n",
|
|
"#\n",
|
|
"#Dmat_markov = cmat2dmat(param_m,Grfc_markov,beta);\n",
|
|
"#DmatObs_markov = cmat2dmat(param_m,Frfc_markov,beta)/(T_markov/2); \n",
|
|
"#clf\n",
|
|
"#subplot(121), cmatplot(u_markov,u_markov,Dmat_markov,4)\n",
|
|
"#title('Theoretical damage matrix') \n",
|
|
"#subplot(122), cmatplot(u_markov,u_markov,DmatObs_markov,4)\n",
|
|
"#title('Observed damage matrix') \n",
|
|
"#if (printing==1), print -deps ../bilder/fatigue_16.eps \n",
|
|
"#end\n",
|
|
"#wafostamp([],'(ER)')\n",
|
|
"#disp('Block 21'),pause(pstate)\n",
|
|
"#\n",
|
|
"#\n",
|
|
"##!#!\n",
|
|
"##!Damplus_markov = lc2dplus(mu_markov,beta)\n",
|
|
"#pause(pstate)\n",
|
|
"#\n",
|
|
"##!#! Section 4.4.4 Estimation of S-N curve\n",
|
|
"#\n",
|
|
"##!#! Load SN-data and plot in log-log scale.\n",
|
|
"#SN = load('sn.dat');\n",
|
|
"#s = SN(:,1);\n",
|
|
"#N = SN(:,2);\n",
|
|
"#clf\n",
|
|
"#loglog(N,s,'o'), axis([0 14e5 10 30])\n",
|
|
"##!if (printing==1), print -deps ../bilder/fatigue_?.eps end\n",
|
|
"#wafostamp([],'(ER)')\n",
|
|
"#disp('Block 22'),pause(pstate)\n",
|
|
"#\n",
|
|
"#\n",
|
|
"##!#! Check of S-N-model on normal probability paper.\n",
|
|
"#\n",
|
|
"#normplot(reshape(log(N),8,5))\n",
|
|
"#if (printing==1), print -deps ../bilder/fatigue_17.eps \n",
|
|
"#end\n",
|
|
"#wafostamp([],'(ER)')\n",
|
|
"#disp('Block 23'),pause(pstate)\n",
|
|
"#\n",
|
|
"##!#! Estimation of S-N-model on linear scale.\n",
|
|
"#clf\n",
|
|
"#[e0,beta0,s20] = snplot(s,N,12);\n",
|
|
"#title('S-N-data with estimated N(s)','FontSize',20)\n",
|
|
"#set(gca,'FontSize',20)\n",
|
|
"#if (printing==1), print -deps ../bilder/fatigue_18a.eps \n",
|
|
"#end\n",
|
|
"#wafostamp([],'(ER)')\n",
|
|
"#disp('Block 24'),pause(pstate)\n",
|
|
"#\n",
|
|
"##!#! Estimation of S-N-model on log-log scale.\n",
|
|
"#clf\n",
|
|
"#[e0,beta0,s20] = snplot(s,N,14);\n",
|
|
"#title('S-N-data with estimated N(s)','FontSize',20)\n",
|
|
"#set(gca,'FontSize',20)\n",
|
|
"#if (printing==1), print -deps ../bilder/fatigue_18b.eps \n",
|
|
"#end\n",
|
|
"#wafostamp([],'(ER)')\n",
|
|
"#disp('Block 25'),pause(pstate)\n",
|
|
"#\n",
|
|
"##!#! Section 4.4.5 From S-N curve to fatigue life distribution\n",
|
|
"##!#! Damage intensity as function of $\\beta$\n",
|
|
"#beta = 3:0.1:8;\n",
|
|
"#DRFC = cc2dam(RFC_sea,beta);\n",
|
|
"#dRFC = DRFC/T_sea;\n",
|
|
"#plot(beta,dRFC), axis([3 8 0 0.25])\n",
|
|
"#title('Damage intensity as function of \\beta')\n",
|
|
"#if (printing==1), print -deps ../bilder/fatigue_19.eps \n",
|
|
"#end\n",
|
|
"#wafostamp([],'(ER)')\n",
|
|
"#disp('Block 26'),pause(pstate)\n",
|
|
"#\n",
|
|
"##!#! Fatigue life distribution with sea load.\n",
|
|
"#dam0 = cc2dam(RFC_sea,beta0)/T_sea;\n",
|
|
"#[t0,F0] = ftf(e0,dam0,s20,0.5,1);\n",
|
|
"#[t1,F1] = ftf(e0,dam0,s20,0,1);\n",
|
|
"#[t2,F2] = ftf(e0,dam0,s20,5,1);\n",
|
|
"#plot(t0,F0,t1,F1,t2,F2)\n",
|
|
"#title('Fatigue life distribution function')\n",
|
|
"#if (printing==1), print -deps ../bilder/fatigue_20.eps \n",
|
|
"#end\n",
|
|
"#wafostamp([],'(ER)')\n",
|
|
"#disp('Block 27, last block')"
|
|
],
|
|
"language": "python",
|
|
"metadata": {},
|
|
"outputs": []
|
|
}
|
|
],
|
|
"metadata": {}
|
|
}
|
|
]
|
|
} |