You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
611 lines
20 KiB
Python
611 lines
20 KiB
Python
from __future__ import absolute_import
|
|
import warnings
|
|
from wafo.graphutil import cltext
|
|
from wafo.plotbackend import plotbackend as plt
|
|
from time import gmtime, strftime
|
|
import numpy as np
|
|
from scipy.integrate.quadrature import cumtrapz # @UnresolvedImport
|
|
from scipy import interpolate
|
|
from scipy import integrate
|
|
__all__ = ['PlotData', 'AxisLabels']
|
|
|
|
|
|
def empty_copy(obj):
|
|
class Empty(obj.__class__):
|
|
|
|
def __init__(self):
|
|
pass
|
|
newcopy = Empty()
|
|
newcopy.__class__ = obj.__class__
|
|
return newcopy
|
|
|
|
|
|
def now():
|
|
'''
|
|
Return current date and time as a string
|
|
'''
|
|
return strftime("%a, %d %b %Y %H:%M:%S", gmtime())
|
|
|
|
|
|
class PlotData(object):
|
|
|
|
'''
|
|
Container class for data with interpolation and plotting methods
|
|
|
|
Member variables
|
|
----------------
|
|
data : array_like
|
|
args : vector for 1D, list of vectors for 2D, 3D, ...
|
|
labels : AxisLabels
|
|
children : list of PlotData objects
|
|
plot_args_children : list of arguments to the children plots
|
|
plot_kwds_children : dict of keyword arguments to the children plots
|
|
plot_args : list of arguments to the main plot
|
|
plot_kwds : dict of keyword arguments to the main plot
|
|
|
|
Member methods
|
|
--------------
|
|
copy : return a copy of object
|
|
eval_points : interpolate data at given points and return the result
|
|
plot : plot data on given axis and the object handles
|
|
|
|
Example
|
|
-------
|
|
>>> import numpy as np
|
|
>>> x = np.linspace(0, np.pi, 9)
|
|
|
|
# Plot 2 objects in one call
|
|
>>> d2 = PlotData(np.sin(x), x, xlab='x', ylab='sin', title='sinus',
|
|
... plot_args=['r.'])
|
|
|
|
>>> h = d2.plot()
|
|
>>> h1 = d2()
|
|
|
|
# Plot with confidence interval
|
|
>>> d3 = PlotData(np.sin(x), x)
|
|
>>> d3.children = [PlotData(np.vstack([np.sin(x)*0.9,
|
|
... np.sin(x)*1.2]).T, x)]
|
|
>>> d3.plot_args_children = [':r']
|
|
|
|
>>> h = d3.plot()
|
|
|
|
'''
|
|
|
|
def __init__(self, data=None, args=None, *args2, **kwds):
|
|
self.data = data
|
|
self.args = args
|
|
self.date = now()
|
|
self.plotter = kwds.pop('plotter', None)
|
|
self.children = kwds.pop('children', None)
|
|
self.plot_args_children = kwds.pop('plot_args_children', [])
|
|
self.plot_kwds_children = kwds.pop('plot_kwds_children', {})
|
|
self.plot_args = kwds.pop('plot_args', [])
|
|
self.plot_kwds = kwds.pop('plot_kwds', {})
|
|
|
|
self.labels = AxisLabels(**kwds)
|
|
if not self.plotter:
|
|
self.setplotter(kwds.get('plotmethod', None))
|
|
|
|
def copy(self):
|
|
newcopy = empty_copy(self)
|
|
newcopy.__dict__.update(self.__dict__)
|
|
return newcopy
|
|
|
|
def eval_points(self, *points, **kwds):
|
|
'''
|
|
Interpolate data at points
|
|
|
|
Parameters
|
|
----------
|
|
points : ndarray of float, shape (..., ndim)
|
|
Points where to interpolate data at.
|
|
method : {'linear', 'nearest', 'cubic'}
|
|
method : {'linear', 'nearest', 'cubic'}
|
|
Method of interpolation. One of
|
|
- ``nearest``: return the value at the data point closest to
|
|
the point of interpolation.
|
|
- ``linear``: tesselate the input point set to n-dimensional
|
|
simplices, and interpolate linearly on each simplex.
|
|
- ``cubic`` (1-D): return the value detemined from a cubic
|
|
spline.
|
|
- ``cubic`` (2-D): return the value determined from a
|
|
piecewise cubic, continuously differentiable (C1), and
|
|
approximately curvature-minimizing polynomial surface.
|
|
fill_value : float, optional
|
|
Value used to fill in for requested points outside of the
|
|
convex hull of the input points. If not provided, then the
|
|
default is ``nan``. This option has no effect for the
|
|
'nearest' method.
|
|
|
|
Examples
|
|
--------
|
|
>>> import numpy as np
|
|
>>> x = np.arange(-2, 2, 0.4)
|
|
>>> xi = np.arange(-2, 2, 0.1)
|
|
|
|
>>> d = PlotData(np.sin(x), x, xlab='x', ylab='sin', title='sinus',
|
|
... plot_args=['r.'])
|
|
>>> di = PlotData(d.eval_points(xi), xi)
|
|
|
|
>>> hi = di.plot()
|
|
>>> h = d.plot()
|
|
>>> di.to_cdf()
|
|
|
|
|
|
See also
|
|
--------
|
|
scipy.interpolate.griddata
|
|
'''
|
|
options = dict(method='linear')
|
|
options.update(**kwds)
|
|
if isinstance(self.args, (list, tuple)): # Multidimensional data
|
|
ndim = len(self.args)
|
|
if ndim < 2:
|
|
msg = '''
|
|
Unable to determine plotter-type, because len(self.args)<2.
|
|
If the data is 1D, then self.args should be a vector!
|
|
If the data is 2D, then length(self.args) should be 2.
|
|
If the data is 3D, then length(self.args) should be 3.
|
|
Unless you fix this, the interpolation will not work!'''
|
|
warnings.warn(msg)
|
|
else:
|
|
xi = np.meshgrid(*self.args)
|
|
return interpolate.griddata(xi, self.data.ravel(), points,
|
|
**options)
|
|
# One dimensional data
|
|
return interpolate.griddata(self.args, self.data, points, **options)
|
|
|
|
def to_cdf(self):
|
|
if isinstance(self.args, (list, tuple)): # Multidimensional data
|
|
raise NotImplementedError('integration for ndim>1 not implemented')
|
|
cdf = np.hstack((0, cumtrapz(self.data, self.args)))
|
|
return PlotData(cdf, np.copy(self.args), xlab='x', ylab='F(x)')
|
|
|
|
def integrate(self, a=None, b=None, **kwds):
|
|
'''
|
|
>>> x = np.linspace(0,5,60)
|
|
>>> d = PlotData(np.sin(x), x)
|
|
>>> d.dataCI = np.vstack((d.data*.9,d.data*1.1)).T
|
|
>>> d.integrate(0,np.pi/2, return_ci=True)
|
|
array([ 0.99940055, 0.85543644, 1.04553343])
|
|
>>> np.allclose(d.integrate(0, 5, return_ci=True),
|
|
... d.integrate(return_ci=True))
|
|
True
|
|
|
|
'''
|
|
method = kwds.pop('method', 'trapz')
|
|
fun = getattr(integrate, method)
|
|
if isinstance(self.args, (list, tuple)): # Multidimensional data
|
|
raise NotImplementedError('integration for ndim>1 not implemented')
|
|
# One dimensional data
|
|
return_ci = kwds.pop('return_ci', False)
|
|
x = self.args
|
|
if a is None:
|
|
a = x[0]
|
|
if b is None:
|
|
b = x[-1]
|
|
ix = np.flatnonzero((a < x) & (x < b))
|
|
xi = np.hstack((a, x.take(ix), b))
|
|
fi = np.hstack((self.eval_points(a), self.data.take(ix),
|
|
self.eval_points(b)))
|
|
res = fun(fi, xi, **kwds)
|
|
if return_ci:
|
|
return np.hstack(
|
|
(res, fun(self.dataCI[ix, :].T, xi[1:-1], **kwds)))
|
|
return res
|
|
|
|
def plot(self, *args, **kwds):
|
|
axis = kwds.pop('axis', None)
|
|
if axis is None:
|
|
axis = plt.gca()
|
|
tmp = None
|
|
default_plotflag = self.plot_kwds.get('plotflag', None)
|
|
plotflag = kwds.get('plotflag', default_plotflag)
|
|
if not plotflag and self.children is not None:
|
|
axis.hold('on')
|
|
tmp = []
|
|
child_args = kwds.pop(
|
|
'plot_args_children',
|
|
tuple(
|
|
self.plot_args_children))
|
|
child_kwds = dict(self.plot_kwds_children).copy()
|
|
child_kwds.update(kwds.pop('plot_kwds_children', {}))
|
|
child_kwds['axis'] = axis
|
|
for child in self.children:
|
|
tmp1 = child(*child_args, **child_kwds)
|
|
if tmp1 is not None:
|
|
tmp.append(tmp1)
|
|
if len(tmp) == 0:
|
|
tmp = None
|
|
main_args = args if len(args) else tuple(self.plot_args)
|
|
main_kwds = dict(self.plot_kwds).copy()
|
|
main_kwds.update(kwds)
|
|
main_kwds['axis'] = axis
|
|
tmp2 = self.plotter.plot(self, *main_args, **main_kwds)
|
|
return tmp2, tmp
|
|
|
|
def setplotter(self, plotmethod=None):
|
|
'''
|
|
Set plotter based on the data type:
|
|
data_1d, data_2d, data_3d or data_nd
|
|
'''
|
|
if isinstance(self.args, (list, tuple)): # Multidimensional data
|
|
ndim = len(self.args)
|
|
if ndim < 2:
|
|
msg = '''
|
|
Unable to determine plotter-type, because len(self.args)<2.
|
|
If the data is 1D, then self.args should be a vector!
|
|
If the data is 2D, then length(self.args) should be 2.
|
|
If the data is 3D, then length(self.args) should be 3.
|
|
Unless you fix this, the plot methods will not work!'''
|
|
warnings.warn(msg)
|
|
elif ndim == 2:
|
|
self.plotter = Plotter_2d(plotmethod)
|
|
else:
|
|
warnings.warn('Plotter method not implemented for ndim>2')
|
|
|
|
else: # One dimensional data
|
|
self.plotter = Plotter_1d(plotmethod)
|
|
|
|
def show(self, *args, **kwds):
|
|
self.plotter.show(*args, **kwds)
|
|
|
|
__call__ = plot
|
|
interpolate = eval_points
|
|
|
|
|
|
class AxisLabels:
|
|
|
|
def __init__(self, title='', xlab='', ylab='', zlab='', **kwds):
|
|
self.title = title
|
|
self.xlab = xlab
|
|
self.ylab = ylab
|
|
self.zlab = zlab
|
|
|
|
def __repr__(self):
|
|
return self.__str__()
|
|
|
|
def __str__(self):
|
|
return '%s\n%s\n%s\n%s\n' % (
|
|
self.title, self.xlab, self.ylab, self.zlab)
|
|
|
|
def copy(self):
|
|
newcopy = empty_copy(self)
|
|
newcopy.__dict__.update(self.__dict__)
|
|
return newcopy
|
|
|
|
def labelfig(self, axis=None):
|
|
if axis is None:
|
|
axis = plt.gca()
|
|
try:
|
|
h = []
|
|
for fun, txt in zip(
|
|
('set_title', 'set_xlabel', 'set_ylabel', 'set_ylabel'),
|
|
(self.title, self.xlab, self.ylab, self.zlab)):
|
|
if txt:
|
|
if fun.startswith('set_title'):
|
|
title0 = axis.get_title()
|
|
if title0.lower().strip() != txt.lower().strip():
|
|
txt = title0 + '\n' + txt
|
|
h.append(getattr(axis, fun)(txt))
|
|
return h
|
|
except:
|
|
pass
|
|
|
|
|
|
class Plotter_1d(object):
|
|
|
|
"""
|
|
|
|
Parameters
|
|
----------
|
|
plotmethod : string
|
|
defining type of plot. Options are:
|
|
bar : bar plot with rectangles
|
|
barh : horizontal bar plot with rectangles
|
|
loglog : plot with log scaling on the *x* and *y* axis
|
|
semilogx : plot with log scaling on the *x* axis
|
|
semilogy : plot with log scaling on the *y* axis
|
|
plot : Plot lines and/or markers (default)
|
|
stem : Stem plot
|
|
step : stair-step plot
|
|
scatter : scatter plot
|
|
"""
|
|
|
|
def __init__(self, plotmethod='plot'):
|
|
self.plotfun = None
|
|
if plotmethod is None:
|
|
plotmethod = 'plot'
|
|
self.plotmethod = plotmethod
|
|
# self.plotbackend = plotbackend
|
|
# try:
|
|
# self.plotfun = getattr(plotbackend, plotmethod)
|
|
# except:
|
|
# pass
|
|
|
|
def show(self, *args, **kwds):
|
|
plt.show(*args, **kwds)
|
|
|
|
def plot(self, wdata, *args, **kwds):
|
|
axis = kwds.pop('axis', None)
|
|
if axis is None:
|
|
axis = plt.gca()
|
|
plotflag = kwds.pop('plotflag', False)
|
|
if plotflag:
|
|
h1 = self._plot(axis, plotflag, wdata, *args, **kwds)
|
|
else:
|
|
if isinstance(wdata.data, (list, tuple)):
|
|
vals = tuple(wdata.data)
|
|
else:
|
|
vals = (wdata.data,)
|
|
if isinstance(wdata.args, (list, tuple)):
|
|
args1 = tuple((wdata.args)) + vals + args
|
|
else:
|
|
args1 = tuple((wdata.args,)) + vals + args
|
|
plotfun = getattr(axis, self.plotmethod)
|
|
h1 = plotfun(*args1, **kwds)
|
|
h2 = wdata.labels.labelfig(axis)
|
|
return h1, h2
|
|
|
|
def _plot(self, axis, plotflag, wdata, *args, **kwds):
|
|
x = wdata.args
|
|
data = transformdata(x, wdata.data, plotflag)
|
|
dataCI = getattr(wdata, 'dataCI', ())
|
|
h1 = plot1d(axis, x, data, dataCI, plotflag, *args, **kwds)
|
|
return h1
|
|
__call__ = plot
|
|
|
|
|
|
def plot1d(axis, args, data, dataCI, plotflag, *varargin, **kwds):
|
|
|
|
plottype = np.mod(plotflag, 10)
|
|
if plottype == 0: # No plotting
|
|
return []
|
|
elif plottype == 1:
|
|
H = axis.plot(args, data, *varargin, **kwds)
|
|
elif plottype == 2:
|
|
H = axis.step(args, data, *varargin, **kwds)
|
|
elif plottype == 3:
|
|
H = axis.stem(args, data, *varargin, **kwds)
|
|
elif plottype == 4:
|
|
H = axis.errorbar(args, data,
|
|
yerr=[dataCI[:, 0] - data,
|
|
dataCI[:, 1] - data],
|
|
*varargin, **kwds)
|
|
elif plottype == 5:
|
|
H = axis.bar(args, data, *varargin, **kwds)
|
|
elif plottype == 6:
|
|
level = 0
|
|
if np.isfinite(level):
|
|
H = axis.fill_between(args, data, level, *varargin, **kwds)
|
|
else:
|
|
H = axis.fill_between(args, data, *varargin, **kwds)
|
|
elif plottype == 7:
|
|
H = axis.plot(args, data, *varargin, **kwds)
|
|
H = axis.fill_between(args, dataCI[:, 0], dataCI[:, 1],
|
|
alpha=0.2, color='r')
|
|
|
|
scale = plotscale(plotflag)
|
|
logXscale = 'x' in scale
|
|
logYscale = 'y' in scale
|
|
logZscale = 'z' in scale
|
|
|
|
if logXscale:
|
|
axis.set(xscale='log')
|
|
if logYscale:
|
|
axis.set(yscale='log')
|
|
if logZscale:
|
|
axis.set(zscale='log')
|
|
|
|
transFlag = np.mod(plotflag // 10, 10)
|
|
logScale = logXscale or logYscale or logZscale
|
|
if logScale or (transFlag == 5 and not logScale):
|
|
ax = list(axis.axis())
|
|
fmax1 = data.max()
|
|
if transFlag == 5 and not logScale:
|
|
ax[3] = 11 * np.log10(fmax1)
|
|
ax[2] = ax[3] - 40
|
|
else:
|
|
ax[3] = 1.15 * fmax1
|
|
ax[2] = ax[3] * 1e-4
|
|
|
|
axis.axis(ax)
|
|
|
|
if np.any(dataCI) and plottype < 3:
|
|
axis.hold(True)
|
|
plot1d(axis, args, dataCI, (), plotflag, 'r--')
|
|
return H
|
|
|
|
|
|
def plotscale(plotflag):
|
|
'''
|
|
Return plotscale from plotflag
|
|
|
|
CALL scale = plotscale(plotflag)
|
|
|
|
plotflag = integer defining plotscale.
|
|
Let scaleId = floor(plotflag/100).
|
|
If scaleId < 8 then:
|
|
0 'linear' : Linear scale on all axes.
|
|
1 'xlog' : Log scale on x-axis.
|
|
2 'ylog' : Log scale on y-axis.
|
|
3 'xylog' : Log scale on xy-axis.
|
|
4 'zlog' : Log scale on z-axis.
|
|
5 'xzlog' : Log scale on xz-axis.
|
|
6 'yzlog' : Log scale on yz-axis.
|
|
7 'xyzlog' : Log scale on xyz-axis.
|
|
otherwise
|
|
if (mod(scaleId,10)>0) : Log scale on x-axis.
|
|
if (mod(floor(scaleId/10),10)>0) : Log scale on y-axis.
|
|
if (mod(floor(scaleId/100),10)>0) : Log scale on z-axis.
|
|
|
|
scale = string defining plotscale valid options are:
|
|
'linear', 'xlog', 'ylog', 'xylog', 'zlog', 'xzlog',
|
|
'yzlog', 'xyzlog'
|
|
|
|
Examples
|
|
--------
|
|
>>> for i in range(7):
|
|
... plotscale(i*100)
|
|
'linear'
|
|
'xlog'
|
|
'ylog'
|
|
'xylog'
|
|
'zlog'
|
|
'xzlog'
|
|
'yzlog'
|
|
|
|
>>> plotscale(100)
|
|
'xlog'
|
|
>>> plotscale(1000)
|
|
'ylog'
|
|
>>> plotscale(10000)
|
|
'zlog'
|
|
|
|
See also
|
|
---------
|
|
plotscale
|
|
'''
|
|
scaleId = plotflag // 100
|
|
if scaleId > 7:
|
|
logXscaleId = np.mod(scaleId, 10) > 0
|
|
logYscaleId = (np.mod(scaleId // 10, 10) > 0) * 2
|
|
logZscaleId = (np.mod(scaleId // 100, 10) > 0) * 4
|
|
scaleId = logYscaleId + logXscaleId + logZscaleId
|
|
|
|
scales = ['linear', 'xlog', 'ylog', 'xylog', 'zlog', 'xzlog',
|
|
'yzlog', 'xyzlog']
|
|
|
|
return scales[scaleId]
|
|
|
|
|
|
def transformdata(x, f, plotflag):
|
|
transFlag = np.mod(plotflag // 10, 10)
|
|
if transFlag == 0:
|
|
data = f
|
|
elif transFlag == 1:
|
|
data = 1 - f
|
|
elif transFlag == 2:
|
|
data = cumtrapz(f, x)
|
|
elif transFlag == 3:
|
|
data = 1 - cumtrapz(f, x)
|
|
if transFlag in (4, 5):
|
|
if transFlag == 4:
|
|
data = -np.log1p(-cumtrapz(f, x))
|
|
else:
|
|
if any(f < 0):
|
|
raise ValueError('Invalid plotflag: Data or dataCI is ' +
|
|
'negative, but must be positive')
|
|
data = 10 * np.log10(f)
|
|
return data
|
|
|
|
|
|
class Plotter_2d(Plotter_1d):
|
|
|
|
"""
|
|
Parameters
|
|
----------
|
|
plotmethod : string
|
|
defining type of plot. Options are:
|
|
contour (default)
|
|
contourf
|
|
mesh
|
|
surf
|
|
"""
|
|
|
|
def __init__(self, plotmethod='contour'):
|
|
if plotmethod is None:
|
|
plotmethod = 'contour'
|
|
super(Plotter_2d, self).__init__(plotmethod)
|
|
|
|
def _plot(self, axis, plotflag, wdata, *args, **kwds):
|
|
h1 = plot2d(axis, wdata, plotflag, *args, **kwds)
|
|
return h1
|
|
|
|
|
|
def plot2d(axis, wdata, plotflag, *args, **kwds):
|
|
f = wdata
|
|
if isinstance(wdata.args, (list, tuple)):
|
|
args1 = tuple((wdata.args)) + (wdata.data,) + args
|
|
else:
|
|
args1 = tuple((wdata.args,)) + (wdata.data,) + args
|
|
if plotflag in (1, 6, 7, 8, 9):
|
|
isPL = False
|
|
# check if contour levels is submitted
|
|
if hasattr(f, 'clevels') and len(f.clevels) > 0:
|
|
CL = f.clevels
|
|
isPL = hasattr(f, 'plevels') and f.plevels is not None
|
|
if isPL:
|
|
PL = f.plevels # levels defines quantile levels? 0=no 1=yes
|
|
else:
|
|
dmax = np.max(f.data)
|
|
dmin = np.min(f.data)
|
|
CL = dmax - (dmax - dmin) * \
|
|
(1 - np.r_[0.01, 0.025, 0.05, 0.1, 0.2, 0.4, 0.5, 0.75])
|
|
clvec = np.sort(CL)
|
|
|
|
if plotflag in [1, 8, 9]:
|
|
h = axis.contour(*args1, levels=clvec, **kwds)
|
|
# else:
|
|
# [cs hcs] = contour3(f.x{:},f.f,CL,sym);
|
|
|
|
if plotflag in (1, 6):
|
|
ncl = len(clvec)
|
|
if ncl > 12:
|
|
ncl = 12
|
|
warnings.warn(
|
|
'Only the first 12 levels will be listed in table.')
|
|
|
|
clvals = PL[:ncl] if isPL else clvec[:ncl]
|
|
unused_axcl = cltext(clvals, percent=isPL)
|
|
elif any(plotflag == [7, 9]):
|
|
axis.clabel(h)
|
|
else:
|
|
axis.clabel(h)
|
|
elif plotflag == 2:
|
|
h = axis.mesh(*args1, **kwds)
|
|
elif plotflag == 3:
|
|
# shading interp % flat, faceted % surfc
|
|
h = axis.surf(*args1, **kwds)
|
|
elif plotflag == 4:
|
|
h = axis.waterfall(*args1, **kwds)
|
|
elif plotflag == 5:
|
|
h = axis.pcolor(*args1, **kwds) # %shading interp % flat, faceted
|
|
elif plotflag == 10:
|
|
h = axis.contourf(*args1, **kwds)
|
|
axis.clabel(h)
|
|
plt.colorbar(h)
|
|
else:
|
|
raise ValueError('unknown option for plotflag')
|
|
# if any(plotflag==(2:5))
|
|
# shading(shad);
|
|
# end
|
|
# pass
|
|
|
|
|
|
def test_plotdata():
|
|
plt.ioff()
|
|
x = np.linspace(0, np.pi, 9)
|
|
xi = np.linspace(0, np.pi, 4*9)
|
|
|
|
d = PlotData(np.sin(x)/2, x, xlab='x', ylab='sin', title='sinus',
|
|
plot_args=['r.'])
|
|
di = PlotData(d.eval_points(xi, method='cubic'), xi)
|
|
unused_hi = di.plot()
|
|
unused_h = d.plot()
|
|
f = di.to_cdf()
|
|
for i in range(4):
|
|
_ = f.plot(plotflag=i)
|
|
d.show('hold')
|
|
|
|
|
|
def test_docstrings():
|
|
import doctest
|
|
print('Testing docstrings in %s' % __file__)
|
|
doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
#test_docstrings()
|
|
test_plotdata()
|