You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
506 lines
16 KiB
Fortran
506 lines
16 KiB
Fortran
PROGRAM sp2tthpdf
|
|
C***********************************************************************
|
|
C This program computes upper and lower bounds for the: *
|
|
C *
|
|
C density of T= T_1+T_2 in a gaussian process i.e. *
|
|
C *
|
|
C wavelengthes for crests <h1 and troughs >h2 *
|
|
C *
|
|
C Sylvie and Igor 7 dec. 1999 *
|
|
C***********************************************************************
|
|
use GLOBALDATA, only : Nt,Nj,Nd,Nc,Ntd,Ntdc,NI,Mb,
|
|
& NIT,Nx,TWOPI,XSPLT,SCIS,NSIMmax,COV
|
|
use rind
|
|
IMPLICIT NONE
|
|
double precision, dimension(:,:),allocatable :: BIG
|
|
double precision, dimension(:,:),allocatable :: ansrup
|
|
double precision, dimension(:,:),allocatable :: ansrlo
|
|
double precision, dimension(: ),allocatable :: ex,CY1,CY2
|
|
double precision, dimension(:,:),allocatable :: xc
|
|
double precision, dimension(:,:),allocatable ::fxind
|
|
double precision, dimension(: ),allocatable :: h1,h2
|
|
double precision, dimension(: ),allocatable :: hh1,hh2
|
|
double precision, dimension(: ),allocatable :: R0,R1,R2
|
|
double precision ::CC,U,XddInf,XdInf,XtInf
|
|
double precision, dimension(:,:),allocatable :: a_up,a_lo
|
|
integer , dimension(: ),allocatable :: seed
|
|
integer ,dimension(7) :: indI
|
|
integer :: Ntime,N0,tn,ts,speed,ph,seed1,seed_size,Nx1,Nx2
|
|
integer :: icy,icy2
|
|
double precision :: ds,dT ! lag spacing for covariances
|
|
! DIGITAL:
|
|
! f90 -g2 -C -automatic -o ~/WAT/V4/sp2tthpdf.exe rind48.f sp2tthpdf.f
|
|
! SOLARIS:
|
|
!f90 -g -O -w3 -Bdynamic -fixed -o ../sp2tthpdf.exe rind48.f sp2tthpdf.f
|
|
|
|
!print *,'enter sp2thpdf'
|
|
CALL INIT_LEVELS(U,Ntime,N0,NIT,speed,SCIS,seed1,Nx1,Nx2,dT)
|
|
|
|
!print *,'U,Ntime,NIT,speed,SCIS,seed1,Nx,dT'
|
|
!print *,U,Ntime,NIT,speed,SCIS,seed1,Nx,dT
|
|
!Nx1=1
|
|
!Nx2=1
|
|
|
|
Nx=Nx1*Nx2
|
|
!print *,'NN',Nx1,Nx2,Nx
|
|
|
|
|
|
!XSPLT=1.5d0
|
|
if (SCIS.GT.0) then
|
|
allocate(COV(1:Nx))
|
|
call random_seed(SIZE=seed_size)
|
|
allocate(seed(seed_size))
|
|
call random_seed(GET=seed(1:seed_size)) ! get current seed
|
|
seed(1)=seed1 ! change seed
|
|
call random_seed(PUT=seed(1:seed_size))
|
|
deallocate(seed)
|
|
endif
|
|
CALL INITDATA(speed)
|
|
!print *,ntime,speed,u,NIT
|
|
allocate(R0(1:Ntime+1))
|
|
allocate(R1(1:Ntime+1))
|
|
allocate(R2(1:Ntime+1))
|
|
|
|
allocate(h1(1:Nx1))
|
|
allocate(h2(1:Nx2))
|
|
CALL INIT_AMPLITUDES(h1,Nx1,h2,Nx2)
|
|
CALL INIT_COVARIANCES(Ntime,R0,R1,R2)
|
|
|
|
|
|
allocate(hh1(1:Nx))
|
|
allocate(hh2(1:Nx))
|
|
!h transformation
|
|
do icy=1,Nx1
|
|
do icy2=1,Nx2
|
|
hh1((icy-1)*Nx2+icy2)=h1(icy);
|
|
hh2((icy-1)*Nx2+icy2)=h2(icy2);
|
|
enddo
|
|
enddo
|
|
|
|
Nj=0
|
|
indI(1)=0
|
|
|
|
C ***** The bound 'infinity' is set to 10*sigma *****
|
|
XdInf=10.d0*SQRT(-R2(1))
|
|
XtInf=10.d0*SQRT(R0(1))
|
|
!h1(1)=XtInf
|
|
!h2(1)=XtInf
|
|
! normalizing constant
|
|
CC=TWOPI*SQRT(-R0(1)/R2(1))*exp(u*u/(2.d0*R0(1)) )
|
|
allocate(CY1(1:Nx))
|
|
allocate(CY2(1:Nx))
|
|
do icy=1,Nx
|
|
CY1(icy)=exp(-0.5*hh1(icy)*hh1(icy)/100)/(10*sqrt(twopi))
|
|
CY2(icy)=exp(-0.5*hh2(icy)*hh2(icy)/100)/(10*sqrt(twopi))
|
|
enddo
|
|
!print *,CY1
|
|
allocate(ansrup(1:Ntime,1:Nx))
|
|
allocate(ansrlo(1:Ntime,1:Nx))
|
|
ansrup=0.d0
|
|
ansrlo=0.d0
|
|
allocate(fxind(1:Nx,1:2))
|
|
!fxind=0.d0 this is not needed
|
|
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
! Y={X(t2)..,X(ts),..X(tn-1)||X'(ts) X'(t1) X'(tn)||Y1 Y2 X(ts) X(t1) X(tn)} !!
|
|
! = [Xt Xd Xc] !!
|
|
! !!
|
|
! Nt=tn-2, Nd=3, Nc=2+3 !!
|
|
! !!
|
|
! Xt= contains Nt time points in the indicator function !!
|
|
! Xd= " Nd derivatives !!
|
|
! Xc= " Nc variables to condition on !!
|
|
! (Y1,Y2) dummy variables ind. of all other v. inputing h1,h2 into rindd !!
|
|
! !!
|
|
! There are 6 ( NI=7) regions with constant bariers: !!
|
|
! (indI(1)=0); for i\in (indI(1),indI(2)] u<Y(i)<h1 !!
|
|
! (indI(2)=ts-2); for i\in (indI(2),indI(2)], inf<Y(i)<inf (no restr.) !!
|
|
! (indI(3)=ts-1); for i\in (indI(3),indI(4)], h2 <Y(i)<u !!
|
|
! (indI(4)=Nt) ; for i\in (indI(4),indI(5)], Y(i)<0 (deriv. X'(ts)) !!
|
|
! (indI(5)=Nt+1); for i\in (indI(5),indI(6)], Y(i)>0 (deriv. X'(t1)) !!
|
|
! (indI(6)=Nt+2); for i\in (indI(6),indI(7)], Y(i)>0 (deriv. X'(tn)) !!
|
|
! (indI(7)=Nt+3); NI=7. !!
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
|
|
|
|
NI=7; Nd=3
|
|
Nc=5; Mb=3
|
|
allocate(a_up(1:Mb,1:(NI-1)))
|
|
allocate(a_lo(1:Mb,1:(NI-1)))
|
|
a_up=0.d0
|
|
a_lo=0.d0
|
|
allocate(BIG(1:(Ntime+Nc+1),1:(Ntime+Nc+1)))
|
|
ALLOCATE(xc(1:Nc,1:Nx))
|
|
allocate(ex(1:(Ntime+Nc+1)))
|
|
!print *,size(ex),Ntime
|
|
ex=0.d0
|
|
!print *,size(ex),ex
|
|
xc(1,1:Nx)=hh1(1:Nx)
|
|
xc(2,1:Nx)=hh2(1:Nx)
|
|
xc(3,1:Nx)=u
|
|
xc(4,1:Nx)=u
|
|
xc(5,1:Nx)=u
|
|
! upp- down- upp-crossings at t1,ts,tn
|
|
|
|
a_lo(1,1)=u
|
|
a_up(1,2)=XtInf ! X(ts) is redundant
|
|
a_lo(1,2)=-Xtinf
|
|
a_up(1,3)=u
|
|
|
|
|
|
a_lo(1,4)=-XdInf
|
|
a_up(1,5)= XdInf
|
|
a_up(1,6)= XdInf
|
|
|
|
a_up(2,1)=1.d0
|
|
a_lo(3,3)=1.d0 !signe a voir!!!!!!
|
|
! print *,a_up
|
|
! print *,a_lo
|
|
do tn=N0,Ntime,1
|
|
! do tn=Ntime,Ntime,1
|
|
Ntd=tn+1
|
|
Nt=Ntd-Nd
|
|
Ntdc=Ntd+Nc
|
|
indI(4)=Nt
|
|
indI(5)=Nt+1
|
|
indI(6)=Nt+2
|
|
indI(7)=Ntd
|
|
if (SCIS.gt.0) then
|
|
if (SCIS.EQ.2) then
|
|
Nj=max(Nt,0)
|
|
else
|
|
Nj=min(max(Nt-5, 0),0)
|
|
endif
|
|
endif
|
|
do ts=3,tn-2
|
|
!print *,'ts,tn' ,ts,tn,Ntdc
|
|
CALL COV_INPUT(Big(1:Ntdc,1:Ntdc),tn,ts,R0,R1,R2)!positive wave period
|
|
indI(2)=ts-2
|
|
indI(3)=ts-1
|
|
|
|
|
|
CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex(1:Ntdc),
|
|
& xc,indI,a_lo,a_up)
|
|
|
|
ds=dt
|
|
do icy=1,Nx
|
|
! ansr(tn,:)=ansr(tn,:)+fxind*CC*ds./(CY1.*CY2)
|
|
ansrup(tn,icy)=ansrup(tn,icy)+fxind(icy,1)*CC*ds
|
|
& /(CY1(icy)*CY2(icy))
|
|
ansrlo(tn,icy)=ansrlo(tn,icy)+fxind(icy,2)*CC*ds
|
|
& /(CY1(icy)*CY2(icy))
|
|
enddo
|
|
enddo ! ts
|
|
print *,'Ready: ',tn,' of ',Ntime
|
|
|
|
enddo !tn
|
|
|
|
300 open (unit=11, file='dens.out', STATUS='unknown')
|
|
|
|
do ts=1,Ntime
|
|
do ph=1,Nx
|
|
write(11,*) ansrup(ts,ph),ansrlo(ts,ph)!,hh1(ph),hh2(ph)
|
|
! write(11,111) ansrup(ts,ph),ansrlo(ts,ph)
|
|
|
|
enddo
|
|
enddo
|
|
!111 FORMAT(2x,F12.8)
|
|
close(11)
|
|
900 deallocate(big)
|
|
deallocate(fxind)
|
|
deallocate(ansrup)
|
|
deallocate(ansrlo)
|
|
deallocate(xc)
|
|
deallocate(ex)
|
|
deallocate(R0)
|
|
deallocate(R1)
|
|
deallocate(R2)
|
|
if (allocated(COV) ) then
|
|
deallocate(COV)
|
|
endif
|
|
deallocate(h1)
|
|
deallocate(h2)
|
|
deallocate(hh1)
|
|
deallocate(hh2)
|
|
deallocate(a_up)
|
|
deallocate(a_lo)
|
|
stop
|
|
!return
|
|
|
|
CONTAINS
|
|
|
|
|
|
|
|
SUBROUTINE INIT_LEVELS
|
|
& (U,Ntime,N0,NIT,speed,SCIS,seed1,Nx1,Nx2,dT)
|
|
IMPLICIT NONE
|
|
integer, intent(out):: Ntime,N0,NIT,speed,Nx1,Nx2,SCIS,seed1
|
|
double precision ,intent(out) :: U,dT
|
|
|
|
|
|
OPEN(UNIT=14,FILE='reflev.in',STATUS= 'UNKNOWN')
|
|
READ (14,*) U
|
|
READ (14,*) Ntime
|
|
READ (14,*) N0
|
|
READ (14,*) NIT
|
|
READ (14,*) speed
|
|
READ (14,*) SCIS
|
|
READ (14,*) seed1
|
|
|
|
|
|
READ (14,*) Nx1,Nx2
|
|
READ (14,*) dT
|
|
if (Ntime.lt.3) then
|
|
print *,'The number of wavelength points is too small, stop'
|
|
stop
|
|
end if
|
|
|
|
CLOSE(UNIT=14)
|
|
|
|
RETURN
|
|
END SUBROUTINE INIT_LEVELS
|
|
|
|
C******************************************************
|
|
SUBROUTINE INIT_AMPLITUDES(h1,Nx1,h2,Nx2)
|
|
IMPLICIT NONE
|
|
double precision, dimension(:), intent(out) :: h1,h2
|
|
integer, intent(in) :: Nx1,Nx2
|
|
integer :: ix
|
|
|
|
|
|
OPEN(UNIT=4,FILE='h.in',STATUS= 'UNKNOWN')
|
|
|
|
C
|
|
C Reading in amplitudes
|
|
C
|
|
do ix=1,Nx1
|
|
READ (4,*) H1(ix)
|
|
enddo
|
|
do ix=1,Nx2
|
|
READ (4,*) H2(ix)
|
|
enddo
|
|
CLOSE(UNIT=4)
|
|
|
|
RETURN
|
|
END SUBROUTINE INIT_AMPLITUDES
|
|
|
|
C**************************************************
|
|
|
|
C***********************************************************************
|
|
C***********************************************************************
|
|
|
|
SUBROUTINE INIT_COVARIANCES(Ntime,R0,R1,R2)
|
|
IMPLICIT NONE
|
|
double precision, dimension(:),intent(out) :: R0,R1,R2
|
|
integer,intent(in) :: Ntime
|
|
integer :: i
|
|
open (unit=1, file='Cd0.in',STATUS='unknown')
|
|
open (unit=2, file='Cd1.in',STATUS='unknown')
|
|
open (unit=3, file='Cd2.in',STATUS='unknown')
|
|
|
|
do i=1,Ntime
|
|
read(1,*) R0(i)
|
|
read(2,*) R1(i)
|
|
read(3,*) R2(i)
|
|
enddo
|
|
close(1)
|
|
close(2)
|
|
close(3)
|
|
|
|
return
|
|
END SUBROUTINE INIT_COVARIANCES
|
|
|
|
C***********************************************************************
|
|
C***********************************************************************
|
|
|
|
C**********************************************************************
|
|
|
|
SUBROUTINE COV_INPUT(BIG,tn,ts, R0,R1,R2)
|
|
IMPLICIT NONE
|
|
double precision, dimension(:,:),intent(inout) :: BIG
|
|
double precision, dimension(:),intent(in) :: R0,R1,R2
|
|
integer ,intent(in) :: tn,ts
|
|
integer :: i,j,Ntd1,N !=Ntdc
|
|
double precision :: tmp
|
|
! the order of the variables in the covariance matrix
|
|
! are organized as follows:
|
|
!
|
|
! ||X(t2)..X(ts),..X(tn-1)||X'(ts) X'(t1) X'(tn)||Y1 Y2 X(ts) X(t1) X(tn)||
|
|
! = [Xt Xd Xc]
|
|
! where
|
|
!
|
|
! Xt= time points in the indicator function
|
|
! Xd= derivatives
|
|
! Xc=variables to condition on
|
|
|
|
! Computations of all covariances follows simple rules: Cov(X(t),X(s))=r(t,s),
|
|
! then Cov(X'(t),X(s))=dr(t,s)/dt. Now for stationary X(t) we have
|
|
! a function r(tau) such that Cov(X(t),X(s))=r(s-t) (or r(t-s) will give the same result).
|
|
!
|
|
! Consequently Cov(X'(t),X(s)) = -r'(s-t) = -sign(s-t)*r'(|s-t|)
|
|
! Cov(X'(t),X'(s)) = -r''(s-t) = -r''(|s-t|)
|
|
! Cov(X''(t),X'(s)) = r'''(s-t) = sign(s-t)*r'''(|s-t|)
|
|
! Cov(X''(t),X(s)) = r''(s-t) = r''(|s-t|)
|
|
! Cov(X''(t),X''(s)) = r''''(s-t) = r''''(|s-t|)
|
|
|
|
Ntd1=tn+1
|
|
N=Ntd1+Nc
|
|
do i=1,tn-2
|
|
!cov(Xt)
|
|
do j=i,tn-2
|
|
BIG(i,j) = R0(j-i+1) ! cov(X(ti+1),X(tj+1))
|
|
enddo
|
|
!cov(Xt,Xc)
|
|
BIG(i ,Ntd1+1) = 0.d0 !cov(X(ti+1),Y1)
|
|
BIG(i ,Ntd1+2) = 0.d0 !cov(X(ti+1),Y2)
|
|
BIG(i ,Ntd1+4) = R0(i+1) !cov(X(ti+1),X(t1))
|
|
BIG(tn-1-i ,Ntd1+5) = R0(i+1) !cov(X(t.. ),X(tn))
|
|
|
|
!Cov(Xt,Xd)=cov(X(ti+1),x(tj)
|
|
BIG(i,Ntd1-1) =-R1(i+1) !cov(X(ti+1),X'(t1))
|
|
BIG(tn-1-i,Ntd1)= R1(i+1) !cov(X(ti+1),X'(tn))
|
|
enddo
|
|
!cov(Xd)
|
|
BIG(Ntd1 ,Ntd1 ) = -R2(1)
|
|
BIG(Ntd1-1,Ntd1 ) = -R2(tn) !cov(X'(t1),X'(tn))
|
|
BIG(Ntd1-1,Ntd1-1) = -R2(1)
|
|
BIG(Ntd1-2,Ntd1-1) = -R2(ts) !cov(X'(ts),X'(t1))
|
|
BIG(Ntd1-2,Ntd1-2) = -R2(1)
|
|
BIG(Ntd1-2,Ntd1 ) = -R2(tn+1-ts) !cov(X'(ts),X'(tn))
|
|
|
|
!cov(Xc)
|
|
BIG(Ntd1+1,Ntd1+1) = 100.d0 ! cov(Y1 Y1)
|
|
BIG(Ntd1+1,Ntd1+2) = 0.d0 ! cov(Y1 Y2)
|
|
BIG(Ntd1+1,Ntd1+3) = 0.d0 ! cov(Y1 X(ts))
|
|
BIG(Ntd1+1,Ntd1+4) = 0.d0 ! cov(Y1 X(t1))
|
|
BIG(Ntd1+1,Ntd1+5) = 0.d0 ! cov(Y1 X(tn))
|
|
BIG(Ntd1+2,Ntd1+2) = 100.d0 ! cov(Y2 Y2)
|
|
BIG(Ntd1+2,Ntd1+3) = 0.d0 ! cov(Y2 X(ts))
|
|
BIG(Ntd1+2,Ntd1+4) = 0.d0 ! cov(Y2 X(t1))
|
|
BIG(Ntd1+2,Ntd1+5) = 0.d0 ! cov(Y2 X(tn))
|
|
|
|
BIG(Ntd1+3,Ntd1+3) = R0(1) ! cov(X(ts),X (ts)
|
|
BIG(Ntd1+3,Ntd1+4) = R0(ts) ! cov(X(ts),X (t1))
|
|
BIG(Ntd1+3,Ntd1+5) = R0(tn+1-ts) ! cov(X(ts),X (tn))
|
|
BIG(Ntd1+4,Ntd1+4) = R0(1) ! cov(X(t1),X (t1))
|
|
BIG(Ntd1+4,Ntd1+5) = R0(tn) ! cov(X(t1),X (tn))
|
|
BIG(Ntd1+5,Ntd1+5) = R0(1) ! cov(X(tn),X (tn))
|
|
|
|
|
|
!cov(Xd,Xc)
|
|
BIG(Ntd1 ,Ntd1+1) = 0.d0 !cov(X'(tn),Y1)
|
|
BIG(Ntd1 ,Ntd1+2) = 0.d0 !cov(X'(tn),Y2)
|
|
BIG(Ntd1-1 ,Ntd1+1) = 0.d0 !cov(X'(t1),Y1)
|
|
BIG(Ntd1-1 ,Ntd1+2) = 0.d0 !cov(X'(t1),Y2)
|
|
BIG(Ntd1-2 ,Ntd1+1) = 0.d0 !cov(X'(ts),Y1)
|
|
BIG(Ntd1-2 ,Ntd1+2) = 0.d0 !cov(X'(ts),Y2)
|
|
|
|
BIG(Ntd1 ,Ntd1+4) = R1(tn) !cov(X'(tn),X(t1))
|
|
BIG(Ntd1 ,Ntd1+5) = 0.d0 !cov(X'(tn),X(tn))
|
|
BIG(Ntd1-1,Ntd1+4) = 0.d0 !cov(X'(t1),X(t1))
|
|
BIG(Ntd1-1,Ntd1+5) =-R1(tn) !cov(X'(t1),X(tn))
|
|
BIG(Ntd1 ,Ntd1+3) = R1(tn+1-ts) !cov(X'(tn),X (ts))
|
|
BIG(Ntd1-1,Ntd1+3) =-R1(ts) !cov(X'(t1),X (ts))
|
|
BIG(Ntd1-2,Ntd1+3) = 0.d0 !cov(X'(ts),X (ts)
|
|
BIG(Ntd1-2,Ntd1+4) = R1(ts) !cov(X'(ts),X (t1))
|
|
BIG(Ntd1-2,Ntd1+5) = -R1(tn+1-ts) !cov(X'(ts),X (tn))
|
|
|
|
|
|
do i=1,tn-2
|
|
j=abs(i+1-ts)
|
|
!cov(Xt,Xc)
|
|
BIG(i,Ntd1+3) = R0(j+1) !cov(X(ti+1),X(ts))
|
|
!Cov(Xt,Xd)
|
|
if ((i+1-ts).lt.0) then
|
|
BIG(i,Ntd1-2) = R1(j+1)
|
|
else !cov(X(ti+1),X'(ts))
|
|
BIG(i,Ntd1-2) = -R1(j+1)
|
|
endif
|
|
enddo
|
|
|
|
! make lower triangular part equal to upper
|
|
do j=1,N-1
|
|
do i=j+1,N
|
|
tmp =BIG(j,i)
|
|
|
|
BIG(i,j)=tmp
|
|
enddo
|
|
enddo
|
|
|
|
C write (*,10) ((BIG(j,i),i=N+1,N+6),j=N+1,N+6)
|
|
C 10 format(6F8.4)
|
|
RETURN
|
|
END SUBROUTINE COV_INPUT
|
|
|
|
SUBROUTINE COV_INPUT2(BIG,pt, R0,R1,R2)
|
|
IMPLICIT NONE
|
|
double precision, dimension(:,:), intent(out) :: BIG
|
|
double precision, dimension(:), intent(in) :: R0,R1,R2
|
|
integer :: pt,i,j
|
|
! the order of the variables in the covariance matrix
|
|
! are organized as follows;
|
|
! X(t2)...X(tn-1) X'(t1) X'(tn) X(t1) X(tn) = [Xt Xd Xc]
|
|
!
|
|
! where Xd is the derivatives
|
|
!
|
|
! Xt= time points in the indicator function
|
|
! Xd= derivatives
|
|
! Xc=variables to condition on
|
|
|
|
!cov(Xc)
|
|
BIG(pt+2,pt+2) = R0(1)
|
|
BIG(pt+1,pt+1) = R0(1)
|
|
BIG(pt+1,pt+2) = R0(pt)
|
|
!cov(Xd)
|
|
BIG(pt,pt) = -R2(1)
|
|
BIG(pt-1,pt-1) = -R2(1)
|
|
BIG(pt-1,pt) = -R2(pt)
|
|
!cov(Xd,Xc)
|
|
BIG(pt,pt+2) = 0.d0
|
|
BIG(pt,pt+1) = R1(pt)
|
|
BIG(pt-1,pt+2) = -R1(pt)
|
|
BIG(pt-1,pt+1) = 0.d0
|
|
|
|
if (pt.GT.2) then
|
|
!cov(Xt)
|
|
do i=1,pt-2
|
|
do j=i,pt-2
|
|
BIG(i,j) = R0(j-i+1)
|
|
enddo
|
|
enddo
|
|
!cov(Xt,Xc)
|
|
do i=1,pt-2
|
|
BIG(i,pt+1) = R0(i+1)
|
|
BIG(pt-1-i,pt+2) = R0(i+1)
|
|
enddo
|
|
!Cov(Xt,Xd)=cov(X(ti+1),x(tj))
|
|
do i=1,pt-2
|
|
BIG(i,pt-1) = -R1(i+1)
|
|
BIG(pt-1-i,pt)= R1(i+1)
|
|
enddo
|
|
endif
|
|
|
|
|
|
! make lower triangular part equal to upper
|
|
do j=1,pt+1
|
|
do i=j+1,pt+2
|
|
BIG(i,j)=BIG(j,i)
|
|
enddo
|
|
enddo
|
|
C write (*,10) ((BIG(j,i),i=N+1,N+6),j=N+1,N+6)
|
|
C 10 format(6F8.4)
|
|
RETURN
|
|
END SUBROUTINE COV_INPUT2
|
|
|
|
|
|
END PROGRAM sp2tthpdf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|