You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
604 lines
19 KiB
Python
604 lines
19 KiB
Python
'''
|
|
Transform Gaussian models
|
|
-------------------------
|
|
TrHermite
|
|
TrOchi
|
|
TrLinear
|
|
'''
|
|
# !/usr/bin/env python
|
|
from __future__ import division, absolute_import
|
|
from scipy.optimize import brentq # @UnresolvedImport
|
|
from numpy import (sqrt, atleast_1d, abs, imag, sign, where, cos, arccos, ceil,
|
|
expm1, log1p, pi)
|
|
import numpy as np
|
|
import warnings
|
|
from .core import TrCommon, TrData
|
|
__all__ = ['TrHermite', 'TrLinear', 'TrOchi']
|
|
|
|
_EPS = np.finfo(float).eps
|
|
|
|
_example = '''
|
|
>>> import numpy as np
|
|
>>> import wafo.spectrum.models as sm
|
|
>>> import wafo.transform.models as tm
|
|
>>> std = 7./4
|
|
>>> g = tm.<generic>(sigma=std, ysigma=std)
|
|
|
|
Simulate a Transformed Gaussian process:
|
|
>>> Sj = sm.Jonswap(Hm0=4*std, Tp=11)
|
|
>>> w = np.linspace(0,4,256)
|
|
>>> S = Sj.tospecdata(w) # Make spectrum object from numerical values
|
|
>>> ys = S.sim(ns=15000) # Simulated in the Gaussian world
|
|
|
|
>>> me, va, sk, ku = S.stats_nl(moments='mvsk')
|
|
>>> g2 = tm.<generic>(mean=me, var=va, skew=sk, kurt=ku, ysigma=std)
|
|
>>> xs = g2.gauss2dat(ys[:,1:]) # Transformed to the real world
|
|
'''
|
|
|
|
|
|
def _assert(cond, msg):
|
|
if not cond:
|
|
raise ValueError(msg)
|
|
|
|
|
|
def _assert_warn(cond, msg):
|
|
if not cond:
|
|
warnings.warn(msg)
|
|
|
|
|
|
class TrCommon2(TrCommon):
|
|
__doc__ = TrCommon.__doc__ # @ReservedAssignment
|
|
|
|
def trdata(self, x=None, xnmin=-5, xnmax=5, n=513):
|
|
"""
|
|
Return a discretized transformation model.
|
|
|
|
Parameters
|
|
----------
|
|
x : vector (default sigma*linspace(xnmin,xnmax,n)+mean)
|
|
xnmin : real, scalar
|
|
minimum on normalized scale
|
|
xnmax : real, scalar
|
|
maximum on normalized scale
|
|
n : integer, scalar
|
|
number of evaluation points
|
|
|
|
Returns
|
|
-------
|
|
t0 : real, scalar
|
|
a measure of departure from the Gaussian model calculated as
|
|
trapz((xn-g(x))**2., xn) where int. limits is given by X.
|
|
"""
|
|
if x is None:
|
|
xn = np.linspace(xnmin, xnmax, n)
|
|
x = self.sigma * xn + self.mean
|
|
else:
|
|
xn = (x - self.mean) / self.sigma
|
|
|
|
yn = (self._dat2gauss(x) - self.ymean) / self.ysigma
|
|
|
|
return TrData(yn, x, mean=self.mean, sigma=self.sigma)
|
|
|
|
|
|
class TrHermite(TrCommon2):
|
|
__doc__ = TrCommon2.__doc__.replace('<generic>', 'Hermite'
|
|
) + """
|
|
pardef : scalar, integer
|
|
1 Winterstein et. al. (1994) parametrization [1]_ (default)
|
|
2 Winterstein (1988) parametrization [2]_
|
|
|
|
Description
|
|
-----------
|
|
The hermite transformation model is monotonic cubic polynomial, calibrated
|
|
such that the first 4 moments of the transformed model G(y)=g^-1(y) match
|
|
the moments of the true process. The model is given as:
|
|
|
|
g(x) = xn - c3(xn**2-1) - c4*(xn**3-3*xn)
|
|
|
|
for kurt<3 (hardening model) where
|
|
xn = (x-mean)/sigma
|
|
c3 = skew/6
|
|
c4 = (kurt-3)/24.
|
|
|
|
or
|
|
G(y) = mean + K*sigma*[ y + c3(y**2-1) + c4*(y**3-3*y) ]
|
|
|
|
for kurt>=3 (softening model) where
|
|
y = g(x) = G**-1(x)
|
|
K = 1/sqrt(1+2*c3^2+6*c4^2)
|
|
If pardef = 1 :
|
|
c3 = skew/6*(1-0.015*abs(skew)+0.3*skew^2)/(1+0.2*(kurt-3))
|
|
c4 = 0.1*((1+1.25*(kurt-3))^(1/3)-1)*c41
|
|
c41 = (1-1.43*skew^2/(kurt-3))^(1-0.1*(kurt)^0.8)
|
|
If pardef = 2 :
|
|
c3 = skew/(6*(1+6*c4))
|
|
c4 = [sqrt(1+1.5*(kurt-3))-1]/18
|
|
|
|
|
|
Example:
|
|
--------
|
|
""" + _example.replace('<generic>', 'TrHermite') + """
|
|
>>> np.allclose(g.dist2gauss(), 0.88230868748851499)
|
|
True
|
|
>>> np.allclose(g2.dist2gauss(), 1.1411663205144991)
|
|
True
|
|
|
|
See also
|
|
--------
|
|
SpecData1d.stats_nl
|
|
wafo.transform.TrOchi
|
|
wafo.objects.LevelCrossings.trdata
|
|
wafo.objects.TimeSeries.trdata
|
|
|
|
References
|
|
----------
|
|
.. [1] Winterstein, S.R, Ude, T.C. and Kleiven, G. (1994)
|
|
"Springing and slow drift responses:
|
|
predicted extremes and fatigue vs. simulation"
|
|
In Proc. 7th International behaviour of Offshore structures, (BOSS)
|
|
Vol. 3, pp.1-15
|
|
.. [2] Winterstein, S.R. (1988)
|
|
'Nonlinear vibration models for extremes and fatigue.'
|
|
J. Engng. Mech., ASCE, Vol 114, No 10, pp 1772-1790
|
|
"""
|
|
|
|
def __init__(self, *args, **kwds):
|
|
super(TrHermite, self).__init__(*args, **kwds)
|
|
self._c3 = None
|
|
self._c4 = None
|
|
self._forward = None
|
|
self._backward = None
|
|
self._x_limit = None
|
|
self.pardef = kwds.get('pardef', 1)
|
|
self.set_poly()
|
|
|
|
@property
|
|
def pardef(self):
|
|
return self._pardef
|
|
|
|
@pardef.setter
|
|
def pardef(self, pardef):
|
|
self._pardef = pardef
|
|
if pardef == 2:
|
|
self._softening_parameters = self._winterstein1988
|
|
else:
|
|
self._softening_parameters = self._winterstein1994
|
|
|
|
def _check_c3_c4(self, c3, c4):
|
|
_assert(np.isfinite(c3) and np.isfinite(c4),
|
|
'Unable to calculate the polynomial')
|
|
if abs(c4) < sqrt(_EPS):
|
|
c4 = 0.0
|
|
return c4
|
|
|
|
def _winterstein1988(self, skew, excess_kurtosis):
|
|
"""Winterstein 1988 parametrization"""
|
|
|
|
_assert_warn(skew ** 2 <= 8 * (excess_kurtosis + 3.) / 9,
|
|
'Kurtosis too low compared to the skewness')
|
|
c4 = (sqrt(1. + 1.5 * excess_kurtosis) - 1.) / 18.
|
|
c3 = skew / (6. * (1 + 6. * c4))
|
|
c4 = self._check_c3_c4(c3, c4)
|
|
return c3, c4
|
|
|
|
def _winterstein1994(self, skew, excess_kurtosis):
|
|
"""Winterstein et. al. 1994 parametrization
|
|
|
|
intended to apply for the range:
|
|
|
|
0 <= excess_kurtosis < 12 and 0<= skew^2 < 2*excess_kurtosis/3
|
|
"""
|
|
_assert_warn(skew ** 2 <= 2 * (excess_kurtosis) / 3,
|
|
'Kurtosis too low compared to the skewness')
|
|
_assert_warn(0 <= excess_kurtosis < 12,
|
|
'Kurtosis must be between 0 and 12')
|
|
c3 = (skew / 6 * (1 - 0.015 * abs(skew) + 0.3 * skew ** 2) /
|
|
(1 + 0.2 * excess_kurtosis))
|
|
if excess_kurtosis == 0.:
|
|
c4 = 0.0
|
|
else:
|
|
expon = 1. - 0.1 * (excess_kurtosis + 3.) ** 0.8
|
|
c41 = (1. - 1.43 * skew ** 2. / excess_kurtosis) ** (expon)
|
|
c4 = 0.1 * ((1. + 1.25 * excess_kurtosis) ** (1. / 3.) - 1.) * c41
|
|
c4 = self._check_c3_c4(c3, c4)
|
|
return c3, c4
|
|
|
|
def _hardening_parameters(self, skew, excess_kurtosis):
|
|
c4 = excess_kurtosis / 24.
|
|
c3 = skew / 6.
|
|
c4 = self._check_c3_c4(c3, c4)
|
|
return c3, c4
|
|
|
|
def _set_x_limit(self, root, polynom):
|
|
"""Compute where it is possible to invert the polynomial"""
|
|
if self.kurt <= 3.:
|
|
self._x_limit = root
|
|
else:
|
|
self._x_limit = self.sigma * polynom(root) + self.mean
|
|
txt1 = '''
|
|
The polynomial is not a strictly increasing function.
|
|
The derivative of g(x) is infinite at x = %g''' % self._x_limit
|
|
warnings.warn(txt1)
|
|
|
|
def _check_monotonicity(self, p):
|
|
dp = p.deriv(m=1) # derivative
|
|
roots = dp.r # roots of the derivative
|
|
roots = roots[where(abs(imag(roots)) < _EPS)] # Keep only real roots
|
|
if roots.size > 0:
|
|
self._set_x_limit(roots, p)
|
|
|
|
def _set_hardening_model(self):
|
|
skew, excess_kurtosis = self.skew, self.kurt - 3.0
|
|
c3, c4 = self._hardening_parameters(skew, excess_kurtosis)
|
|
p = np.poly1d([-c4, -c3, 1. + 3. * c4, c3])
|
|
self._forward = p
|
|
self._backward = lambda yn: self._poly_inv(self._forward, yn)
|
|
# Check if it is a strictly increasing function.
|
|
self._check_monotonicity(p)
|
|
|
|
def _set_softening_model(self):
|
|
skew, excess_kurtosis = self.skew, self.kurt - 3.0
|
|
c3, c4 = self._softening_parameters(skew, excess_kurtosis)
|
|
|
|
Km1 = np.sqrt(1. + 2. * c3 ** 2 + 6 * c4 ** 2)
|
|
# backward G
|
|
p = np.poly1d(np.r_[c4, c3, 1. - 3. * c4, -c3] / Km1)
|
|
self._backward = p
|
|
self._forward = lambda yn: self._poly_inv(self._backward, yn)
|
|
|
|
# Check if it is a strictly increasing function.
|
|
self._check_monotonicity(p)
|
|
|
|
def set_poly(self):
|
|
'''
|
|
Set poly function from stats (i.e., mean, sigma, skew and kurt)
|
|
'''
|
|
if self.kurt <= 3.0:
|
|
self._set_hardening_model()
|
|
else:
|
|
self._set_softening_model()
|
|
|
|
def check_forward(self, x):
|
|
if self._x_limit is not None:
|
|
x00 = self._x_limit
|
|
txt2 = 'for the given interval x = [%g, %g]' % (x[0], x[-1])
|
|
|
|
if any(np.logical_and(x[0] <= x00, x00 <= x[-1])):
|
|
cdef = 1
|
|
else:
|
|
cdef = sum(np.logical_xor(x00 <= x[0], x00 <= x[-1]))
|
|
|
|
if np.mod(cdef, 2):
|
|
errtxt = 'Unable to invert the polynomial \n %s' % txt2
|
|
raise ValueError(errtxt)
|
|
np.disp(
|
|
'However, successfully inverted the polynomial\n %s' % txt2)
|
|
|
|
def _dat2gauss(self, x, *xi):
|
|
if len(xi) > 0:
|
|
raise ValueError('Transforming derivatives is not implemented!')
|
|
xn = atleast_1d(x)
|
|
self.check_forward(xn)
|
|
|
|
xn = (xn - self.mean) / self.sigma
|
|
|
|
if self._forward is None:
|
|
# Inverting the polynomial
|
|
yn = self._poly_inv(self._backward, xn)
|
|
else:
|
|
yn = self._forward(xn)
|
|
return yn * self.ysigma + self.ymean
|
|
|
|
def _gauss2dat(self, y, *yi):
|
|
if len(yi) > 0:
|
|
raise ValueError('Transforming derivatives is not implemented!')
|
|
yn = (atleast_1d(y) - self.ymean) / self.ysigma
|
|
# self.check_forward(y)
|
|
|
|
if self._backward is None:
|
|
# Inverting the polynomial
|
|
xn = self._poly_inv(self._forward, yn)
|
|
else:
|
|
xn = self._backward(yn)
|
|
return self.sigma * xn + self.mean
|
|
|
|
def _solve_quadratic(self, p, xn):
|
|
# Quadratic: Solve a*u**2+b*u+c = xn
|
|
coefs = p.coeffs
|
|
a = coefs[0]
|
|
b = coefs[1]
|
|
c = coefs[2] - xn
|
|
t = 0.5 * (b + sign(b) * sqrt(b ** 2 - 4 * a * c))
|
|
# so1 = t/a # largest solution
|
|
so2 = -c / t # smallest solution
|
|
return so2
|
|
|
|
def _poly_inv(self, p, xn):
|
|
'''
|
|
Invert polynomial
|
|
'''
|
|
if p.order < 2:
|
|
return xn
|
|
elif p.order == 2:
|
|
return self._solve_quadratic(p, xn)
|
|
elif p.order == 3:
|
|
return self._solve_third_order(p, xn)
|
|
|
|
def _solve_third_order(self, p, xn):
|
|
# Solve
|
|
# K*(c4*u^3+c3*u^2+(1-3*c4)*u-c3) = xn = (x-ma)/sa
|
|
# -c4*xn^3-c3*xn^2+(1+3*c4)*xn+c3 = u
|
|
coefs = p.coeffs[1::] / p.coeffs[0]
|
|
a = coefs[0]
|
|
b = coefs[1]
|
|
c = coefs[2] - xn / p.coeffs[0]
|
|
|
|
x0 = a / 3.
|
|
# substitue xn = z-x0 and divide by c4 => z^3 + 3*p1*z+2*q0 = 0
|
|
p1 = b / 3 - x0 ** 2
|
|
# p1 = (b-a**2/3)/3
|
|
|
|
# q0 = (c + x0*(2.*x0/3.-b))/2.
|
|
# q0 = x0**3 -a*b/6 +c/2
|
|
q0 = x0 * (x0 ** 2 - b / 2) + c / 2
|
|
# z^3+3*p1*z+2*q0=0
|
|
|
|
# c3 = self._c3
|
|
# c4 = self._c4
|
|
# b1 = 1./(3.*c4)
|
|
# x0 = c3*b1
|
|
# % substitue u = z-x0 and divide by c4 => z^3 + 3*c*z+2*q0 = 0
|
|
# p1 = b1-1.-x0**2.
|
|
# Km1 = np.sqrt(1.+2.*c3**2+6*c4**2)
|
|
# q0 = x0**3-1.5*b1*(x0+xn*Km1)
|
|
# q0 = x0**3-1.5*b1*(x0+xn)
|
|
if self._x_limit is not None: # % Three real roots
|
|
d = sqrt(-p1)
|
|
theta1 = arccos(-q0 / d ** 3) / 3
|
|
th2 = np.r_[0, -2 * pi / 3, 2 * pi / 3]
|
|
x1 = abs(2 * d * cos(theta1[ceil(len(xn) / 2)] + th2) - x0)
|
|
ix = x1.argmin() # choose the smallest solution
|
|
return 2. * d * cos(theta1 + th2[ix]) - x0
|
|
else: # Only one real root exist
|
|
q1 = sqrt((q0) ** 2 + p1 ** 3)
|
|
# Find the real root of the monic polynomial
|
|
A0 = (q1 - q0) ** (1. / 3.)
|
|
B0 = -(q1 + q0) ** (1. / 3.)
|
|
return A0 + B0 - x0 # real root
|
|
# The other complex roots are given by
|
|
# x= -(A0+B0)/2+(A0-B0)*sqrt(3)/2-x0
|
|
# x=-(A0+B0)/2+(A0-B0)*sqrt(-3)/2-x0
|
|
|
|
|
|
class TrLinear(TrCommon2):
|
|
__doc__ = TrCommon2.__doc__.replace('<generic>', 'Linear'
|
|
) + """
|
|
Description
|
|
-----------
|
|
The linear transformation model is monotonic linear polynomial, calibrated
|
|
such that the first 2 moments of the transformed model G(y)=g^-1(y) match
|
|
the moments of the true process.
|
|
|
|
Example:
|
|
--------
|
|
""" + _example.replace('<generic>', 'TrLinear') + """
|
|
>>> np.allclose(g.dist2gauss(), 0)
|
|
True
|
|
>>> np.allclose(g2.dist2gauss(), 0)
|
|
True
|
|
|
|
See also
|
|
--------
|
|
TrOchi
|
|
TrHermite
|
|
SpecData1D.stats_nl
|
|
LevelCrossings.trdata
|
|
TimeSeries.trdata
|
|
spec2skew, ochitr, lc2tr, dat2tr
|
|
|
|
"""
|
|
|
|
def _dat2gauss(self, x, *xi):
|
|
sratio = atleast_1d(self.ysigma / self.sigma)
|
|
y = (atleast_1d(x) - self.mean) * sratio + self.ymean
|
|
if len(xi) > 0:
|
|
y = [y, ] + [ix * sratio for ix in xi]
|
|
return y
|
|
|
|
def _gauss2dat(self, y, *yi):
|
|
sratio = atleast_1d(self.sigma / self.ysigma)
|
|
x = (atleast_1d(y) - self.ymean) * sratio + self.mean
|
|
if len(yi) > 0:
|
|
x = [x, ] + [iy * sratio for iy in yi]
|
|
return x
|
|
|
|
|
|
class TrOchi(TrCommon2):
|
|
__doc__ = TrCommon2.__doc__.replace('<generic>', 'Ochi'
|
|
) + """
|
|
|
|
Description
|
|
-----------
|
|
The Ochi transformation model is a monotonic exponential function,
|
|
calibrated such that the first 3 moments of the transformed model
|
|
G(y)=g^-1(y) match the moments of the true process. However, the
|
|
skewness is limited by ABS(SKEW)<2.82. According to Ochi it is
|
|
appropriate for a process with very strong non-linear characteristics.
|
|
The model is given as:
|
|
g(x) = ((1-exp(-gamma*(x-mean)/sigma))/gamma-mean2)/sigma2
|
|
where
|
|
gamma = 1.28*a for x>=mean
|
|
3*a otherwise
|
|
mean,
|
|
sigma = standard deviation and mean, respectively, of the process.
|
|
mean2,
|
|
sigma2 = normalizing parameters in the transformed world, i.e., to
|
|
make the gaussian process in the transformed world is N(0,1).
|
|
|
|
The unknown parameters a, mean2 and sigma2 are found by solving the
|
|
following non-linear equations:
|
|
|
|
a*(sigma2^2+mean2^2)+mean2 = 0
|
|
sigma2^2-2*a^2*sigma2^4 = 1
|
|
2*a*sigma2^4*(3-8*a^2*sigma2^2) = skew
|
|
|
|
Note
|
|
----
|
|
Transformation, g, does not have continous derivatives of 2'nd order or
|
|
higher.
|
|
|
|
Example
|
|
-------
|
|
""" + _example.replace('<generic>', 'TrOchi') + """
|
|
>>> np.allclose(g.dist2gauss(), 1.410698801056657)
|
|
True
|
|
>>> np.allclose(g2.dist2gauss(), 1.988807188766706)
|
|
True
|
|
|
|
See also
|
|
--------
|
|
spec2skew, hermitetr, lc2tr, dat2tr
|
|
|
|
References
|
|
----------
|
|
Ochi, M.K. and Ahn, K. (1994)
|
|
'Non-Gaussian probability distribution of coastal waves.'
|
|
In Proc. 24th Conf. Coastal Engng, Vol. 1, pp 482-496
|
|
|
|
Michel K. Ochi (1998),
|
|
"OCEAN WAVES, The stochastic approach",
|
|
OCEAN TECHNOLOGY series 6, Cambridge, pp 255-275.
|
|
"""
|
|
|
|
def __init__(self, *args, **kwds):
|
|
super(TrOchi, self).__init__(*args, **kwds)
|
|
self.kurt = None
|
|
self._phat = None
|
|
self._par_from_stats()
|
|
|
|
def _par_from_stats(self):
|
|
skew = self.skew
|
|
if abs(skew) > 2.82842712474619:
|
|
raise ValueError('Skewness must be less than 2.82842')
|
|
|
|
mean1 = self.mean
|
|
sigma1 = self.sigma
|
|
|
|
if skew == 0:
|
|
self._phat = [sigma1, mean1, 0, 0, 1, 0]
|
|
return
|
|
|
|
# Solve the equations to obtain the gamma parameters:
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# a*(sig2^2+ma2^2)+ma2 = 0
|
|
# sig2^2-2*a^2*sig2^4 = E(y^2) % =1
|
|
# 2*a*sig2^4*(3-8*a^2*sig2^2) = E(y^3) % = skew
|
|
|
|
# Let x = [a sig2^2 ]
|
|
# Set up the 2D non-linear equations for a and sig2^2:
|
|
# g1='[x(2)-2.*x(1).^2.*x(2).^2-P1,
|
|
# 2.*x(1).*x(2).^2.*(3-8.*x(1).^2.*x(2))-P2 ]'
|
|
# Or solve the following 1D non-linear equation for sig2^2:
|
|
def g2(x):
|
|
return (-sqrt(abs(x - 1) * 2) * (3. * x - 4 * abs(x - 1)) +
|
|
abs(skew))
|
|
|
|
a1 = 1. # Start interval where sig2^2 is located.
|
|
a2 = 2.
|
|
|
|
sig22 = brentq(g2, a1, a2) # % smallest solution for sig22
|
|
a = sign(skew) * sqrt(abs(sig22 - 1) / 2) / sig22
|
|
gam_a = 1.28 * a
|
|
gam_b = 3 * a
|
|
sigma2 = sqrt(sig22)
|
|
|
|
# Solve the following 2nd order equation to obtain ma2
|
|
# a*(sig2^2+ma2^2)+ma2 = 0
|
|
my2 = (-1. - sqrt(1. - 4. * a ** 2 * sig22)) / a # % Largest mean
|
|
mean2 = a * sig22 / my2 # % choose the smallest mean
|
|
|
|
self._phat = [sigma1, mean1, gam_a, gam_b, sigma2, mean2]
|
|
return
|
|
|
|
def _get_par(self):
|
|
'''
|
|
Returns ga, gb, sigma2, mean2
|
|
'''
|
|
if (self._phat is None or self.sigma != self._phat[0] or
|
|
self.mean != self._phat[1]):
|
|
self._par_from_stats()
|
|
# sigma1 = self._phat[0]
|
|
# mean1 = self._phat[1]
|
|
ga = self._phat[2]
|
|
gb = self._phat[3]
|
|
sigma2 = self._phat[4]
|
|
mean2 = self._phat[5]
|
|
return ga, gb, sigma2, mean2
|
|
|
|
def _dat2gauss(self, x, *xi):
|
|
if len(xi) > 0:
|
|
raise ValueError('Transforming derivatives is not implemented!')
|
|
ga, gb, sigma2, mean2 = self._get_par()
|
|
mean = self.mean
|
|
sigma = self.sigma
|
|
xn = atleast_1d(x)
|
|
shape0 = xn.shape
|
|
xn = (xn.ravel() - mean) / sigma
|
|
igp, = where(0 <= xn)
|
|
igm, = where(xn < 0)
|
|
|
|
g = xn.copy()
|
|
|
|
if ga != 0:
|
|
np.put(g, igp, (-expm1(-ga * xn[igp])) / ga)
|
|
|
|
if gb != 0:
|
|
np.put(g, igm, (-expm1(-gb * xn[igm])) / gb)
|
|
|
|
g.shape = shape0
|
|
return (g - mean2) * self.ysigma / sigma2 + self.ymean
|
|
|
|
def _gauss2dat(self, y, *yi):
|
|
if len(yi) > 0:
|
|
raise ValueError('Transforming derivatives is not implemented!')
|
|
|
|
ga, gb, sigma2, mean2 = self._get_par()
|
|
mean = self.mean
|
|
sigma = self.sigma
|
|
|
|
yn = (atleast_1d(y) - self.ymean) / self.ysigma
|
|
xn = sigma2 * yn.ravel() + mean2
|
|
|
|
igp, = where(0 <= xn)
|
|
igm, = where(xn < 0)
|
|
|
|
if ga != 0:
|
|
np.put(xn, igp, -log1p(-ga * xn[igp]) / ga)
|
|
|
|
if gb != 0:
|
|
np.put(xn, igm, -log1p(-gb * xn[igm]) / gb)
|
|
|
|
xn.shape = yn.shape
|
|
return sigma * xn + mean
|
|
|
|
|
|
def main():
|
|
import pylab
|
|
g = TrHermite(skew=0.1, kurt=3.01)
|
|
g.dist2gauss()
|
|
# g = TrOchi(skew=0.56)
|
|
x = np.linspace(-5, 5)
|
|
y = g(x)
|
|
pylab.plot(np.abs(x - g.gauss2dat(y)))
|
|
# pylab.plot(x,y,x,x,':',g.gauss2dat(y),y,'r')
|
|
|
|
pylab.show()
|
|
np.disp('finito')
|
|
|
|
if __name__ == '__main__':
|
|
if True: # False: #
|
|
import doctest
|
|
doctest.testmod()
|
|
else:
|
|
main()
|