You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3521 lines
104 KiB
Python

'''
Misc
'''
from __future__ import division
import collections
import sys
import fractions
import numpy as np
from numpy import (
meshgrid,
abs, amax, any, logical_and, arange, linspace, atleast_1d,
asarray, ceil, floor, frexp, hypot,
sqrt, arctan2, sin, cos, exp, log, log1p, mod, diff,
finfo, inf, pi, interp, isnan, isscalar, zeros, ones, linalg,
r_, sign, unique, hstack, vstack, nonzero, where, extract)
from scipy.special import gammaln, gamma, psi
from scipy.integrate import trapz, simps
import warnings
from time import strftime, gmtime
from .plotbackend import plotbackend
from collections import OrderedDict
try:
import c_library as clib # @UnresolvedImport
except ImportError:
warnings.warn('c_library not found. Check its compilation.')
clib = None
floatinfo = finfo(float)
_TINY = np.finfo(float).tiny
_EPS = np.finfo(float).eps
__all__ = ['now', 'spaceline', 'narg_smallest', 'args_flat', 'is_numlike',
'JITImport', 'DotDict', 'Bunch', 'printf', 'sub_dict_select',
'parse_kwargs', 'detrendma', 'ecross', 'findcross', 'findextrema',
'findpeaks', 'findrfc', 'rfcfilter', 'findtp', 'findtc',
'findoutliers', 'common_shape', 'argsreduce', 'stirlerr',
'getshipchar',
'betaloge', 'gravity', 'nextpow2', 'discretize', 'polar2cart',
'cart2polar', 'meshgrid', 'ndgrid', 'trangood', 'tranproc',
'plot_histgrm', 'num2pistr', 'test_docstrings', 'lazywhere',
'piecewise',
'valarray']
def valarray(shape, value=np.NaN, typecode=None):
"""Return an array of all value.
"""
if typecode is None:
typecode = bool
out = ones(shape, dtype=typecode) * value
if not isinstance(out, np.ndarray):
out = asarray(out)
return out
def piecewise(xi, condlist, funclist, fill_value=0.0, args=(), **kw):
"""
Evaluate a piecewise-defined function.
Given a set of conditions and corresponding functions, evaluate each
function on the input data wherever its condition is true.
Parameters
----------
xi : tuple
input arguments to the functions in funclist, i.e., (x0, x1,...., xn)
condlist : list of bool arrays
Each boolean array corresponds to a function in `funclist`. Wherever
`condlist[i]` is True, `funclist[i](x0,x1,...,xn)` is used as the
output value. Each boolean array in `condlist` selects a piece of `xi`,
and should therefore be of the same shape as `xi`.
The length of `condlist` must correspond to that of `funclist`.
If one extra function is given, i.e. if
``len(funclist) - len(condlist) == 1``, then that extra function
is the default value, used wherever all conditions are false.
funclist : list of callables, f(*(xi + args), **kw), or scalars
Each function is evaluated over `x` wherever its corresponding
condition is True. It should take an array as input and give an array
or a scalar value as output. If, instead of a callable,
a scalar is provided then a constant function (``lambda x: scalar``) is
assumed.
fill_value : scalar
fill value for out of range values. Default 0.
args : tuple, optional
Any further arguments given here passed to the functions
upon execution, i.e., if called ``piecewise(..., ..., args=(1, 'a'))``,
then each function is called as ``f(x0, x1,..., xn, 1, 'a')``.
kw : dict, optional
Keyword arguments used in calling `piecewise` are passed to the
functions upon execution, i.e., if called
``piecewise(..., ..., lambda=1)``, then each function is called as
``f(x0, x1,..., xn, lambda=1)``.
Returns
-------
out : ndarray
The output is the same shape and type as x and is found by
calling the functions in `funclist` on the appropriate portions of `x`,
as defined by the boolean arrays in `condlist`. Portions not covered
by any condition have undefined values.
See Also
--------
choose, select, where
Notes
-----
This is similar to choose or select, except that functions are
evaluated on elements of `xi` that satisfy the corresponding condition from
`condlist`.
The result is::
|--
|funclist[0](x0[condlist[0]],x1[condlist[0]],...,xn[condlist[0]])
out = |funclist[1](x0[condlist[1]],x1[condlist[1]],...,xn[condlist[1]])
|...
|funclist[n2](x0[condlist[n2]],x1[condlist[n2]],...,xn[condlist[n2]])
|--
Examples
--------
Define the sigma function, which is -1 for ``x < 0`` and +1 for ``x >= 0``.
>>> x = np.linspace(-2.5, 2.5, 6)
>>> piecewise(x, [x < 0, x >= 0], [-1, 1])
array([-1., -1., -1., 1., 1., 1.])
Define the absolute value, which is ``-x`` for ``x <0`` and ``x`` for
``x >= 0``.
>>> piecewise((x,), [x < 0, x >= 0], [lambda x: -x, lambda x: x])
array([ 2.5, 1.5, 0.5, 0.5, 1.5, 2.5])
Define the absolute value, which is ``-x*y`` for ``x*y <0`` and ``x*y`` for
``x*y >= 0``
>>> X, Y = np.meshgrid(x, x)
>>> piecewise((X, Y), [X * Y < 0, ],
... [lambda x, y: -x * y, lambda x, y: x * y])
array([[ 6.25, 3.75, 1.25, 1.25, 3.75, 6.25],
[ 3.75, 2.25, 0.75, 0.75, 2.25, 3.75],
[ 1.25, 0.75, 0.25, 0.25, 0.75, 1.25],
[ 1.25, 0.75, 0.25, 0.25, 0.75, 1.25],
[ 3.75, 2.25, 0.75, 0.75, 2.25, 3.75],
[ 6.25, 3.75, 1.25, 1.25, 3.75, 6.25]])
"""
def otherwise_condition(condlist):
return ~np.logical_or.reduce(condlist, axis=0)
def check_shapes(condlist, funclist):
nc, nf = len(condlist), len(funclist)
if nc not in [nf-1, nf]:
raise ValueError("function list and condition list" +
" must be the same length")
check_shapes(condlist, funclist)
if not isinstance(xi, tuple):
xi = (xi,)
condlist = np.broadcast_arrays(*condlist)
if len(condlist) == len(funclist)-1:
condlist.append(otherwise_condition(condlist))
arrays = np.broadcast_arrays(*xi)
dtype = np.result_type(*arrays)
out = valarray(arrays[0].shape, fill_value, dtype)
for cond, func in zip(condlist, funclist):
if isinstance(func, collections.Callable):
temp = tuple(np.extract(cond, arr) for arr in arrays) + args
np.place(out, cond, func(*temp, **kw))
else: # func is a scalar value
np.place(out, cond, func)
return out
def lazywhere(cond, arrays, f, fillvalue=None, f2=None):
"""
np.where(cond, x, fillvalue) always evaluates x even where cond is False.
This one only evaluates f(arr1[cond], arr2[cond], ...).
For example,
>>> a, b = np.array([1, 2, 3, 4]), np.array([5, 6, 7, 8])
>>> def f(a, b):
... return a*b
>>> lazywhere(a > 2, (a, b), f, np.nan)
array([ nan, nan, 21., 32.])
Notice it assumes that all `arrays` are of the same shape, or can be
broadcasted together.
"""
if fillvalue is None:
if f2 is None:
raise ValueError("One of (fillvalue, f2) must be given.")
else:
fillvalue = np.nan
else:
if f2 is not None:
raise ValueError("Only one of (fillvalue, f2) can be given.")
arrays = np.broadcast_arrays(*arrays)
temp = tuple(np.extract(cond, arr) for arr in arrays)
out = valarray(np.shape(arrays[0]), value=fillvalue)
np.place(out, cond, f(*temp))
if f2 is not None:
temp = tuple(np.extract(~cond, arr) for arr in arrays)
np.place(out, ~cond, f2(*temp))
return out
def rotation_matrix(heading, pitch, roll):
'''
Examples
>>> import numpy as np
>>> rotation_matrix(heading=0, pitch=0, roll=0)
array([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]])
>>> np.all(np.abs(rotation_matrix(heading=180, pitch=0, roll=0)-
... np.array([[ -1.000000e+00, -1.224647e-16, 0.000000e+00],
... [ 1.224647e-16, -1.000000e+00, 0.000000e+00],
... [ -0.000000e+00, 0.000000e+00, 1.000000e+00]]))<1e-7)
True
>>> np.all(np.abs(rotation_matrix(heading=0, pitch=180, roll=0)-
... np.array([[ -1.000000e+00, 0.000000e+00, 1.224647e-16],
... [ -0.000000e+00, 1.000000e+00, 0.000000e+00],
... [ -1.224647e-16, -0.000000e+00, -1.000000e+00]]))<1e-7)
True
>>> np.all(np.abs(rotation_matrix(heading=0, pitch=0, roll=180)-
... np.array([[ 1.000000e+00, 0.000000e+00, 0.000000e+00],
... [ 0.000000e+00, -1.000000e+00, -1.224647e-16],
... [ -0.000000e+00, 1.224647e-16, -1.000000e+00]]))<1e-7)
True
'''
data = np.diag(np.ones(3)) # No transform if H=P=R=0
if heading != 0 or pitch != 0 or roll != 0:
deg2rad = np.pi / 180
H = heading * deg2rad
P = pitch * deg2rad
R = roll * deg2rad # Convert to radians
data.put(0, cos(H) * cos(P))
data.put(1, cos(H) * sin(P) * sin(R) - sin(H) * cos(R))
data.put(2, cos(H) * sin(P) * cos(R) + sin(H) * sin(R))
data.put(3, sin(H) * cos(P))
data.put(4, sin(H) * sin(P) * sin(R) + cos(H) * cos(R))
data.put(5, sin(H) * sin(P) * cos(R) - cos(H) * sin(R))
data.put(6, -sin(P))
data.put(7, cos(P) * sin(R))
data.put(8, cos(P) * cos(R))
return data
def rotate(x, y, z, heading=0, pitch=0, roll=0):
rot_param = rotation_matrix(heading, pitch, roll).ravel()
X = x * rot_param[0] + y * rot_param[1] + z * rot_param[2]
Y = x * rot_param[3] + y * rot_param[4] + z * rot_param[5]
Z = x * rot_param[6] + y * rot_param[7] + z * rot_param[8]
return X, Y, Z
def rotate_2d(x, y, angle_deg):
'''
Rotate points in the xy cartesian plane counter clockwise
Examples
--------
>>> rotate_2d(x=1, y=0, angle_deg=0)
(1.0, 0.0)
>>> rotate_2d(x=1, y=0, angle_deg=90)
(6.123233995736766e-17, 1.0)
>>> rotate_2d(x=1, y=0, angle_deg=180)
(-1.0, 1.2246467991473532e-16)
>>> rotate_2d(x=1, y=0, angle_deg=360)
(1.0, -2.4492935982947064e-16)
'''
angle_rad = angle_deg * pi / 180
ch = cos(angle_rad)
sh = sin(angle_rad)
return ch * x - sh * y, sh * x + ch * y
def now(show_seconds=True):
'''
Return current date and time as a string
'''
if show_seconds:
return strftime("%a, %d %b %Y %H:%M:%S", gmtime())
else:
return strftime("%a, %d %b %Y %H:%M", gmtime())
def _assert(cond, txt=''):
if not cond:
raise ValueError(txt)
def spaceline(start_point, stop_point, num=10):
'''Return `num` evenly spaced points between the start and stop points.
Parameters
----------
start_point : vector, size=3
The starting point of the sequence.
stop_point : vector, size=3
The end point of the sequence.
num : int, optional
Number of samples to generate. Default is 10.
Returns
-------
space_points : ndarray of shape n x 3
There are `num` equally spaced points in the closed interval
``[start, stop]``.
See Also
--------
linspace : similar to spaceline, but in 1D.
arange : Similiar to `linspace`, but uses a step size (instead of the
number of samples).
logspace : Samples uniformly distributed in log space.
Example
-------
>>> import wafo.misc as pm
>>> pm.spaceline((2,0,0), (3,0,0), num=5)
array([[ 2. , 0. , 0. ],
[ 2.25, 0. , 0. ],
[ 2.5 , 0. , 0. ],
[ 2.75, 0. , 0. ],
[ 3. , 0. , 0. ]])
'''
num = int(num)
e1, e2 = np.atleast_1d(start_point, stop_point)
e2m1 = e2 - e1
length = np.sqrt((e2m1 ** 2).sum())
# length = sqrt((E2[0]-E1(1))^2 + (E2(2)-E1(2))^2 + (E2(3)-E1(3))^2)
C = e2m1 / length
delta = length / float(num - 1)
return np.array([e1 + n * delta * C for n in range(num)])
def narg_smallest(n, arr):
''' Return the n smallest indicis to the arr
'''
return np.array(arr).argsort()[:n]
def args_flat(*args):
'''
Return x,y,z positions as a N x 3 ndarray
Parameters
----------
pos : array-like, shape N x 3
[x,y,z] positions
or
x,y,z : array-like
[x,y,z] positions
Returns
------
pos : ndarray, shape N x 3
[x,y,z] positions
common_shape : None or tuple
common shape of x, y and z variables if given as triple input.
Examples
--------
>>> x = [1,2,3]
>>> pos, c_shape =args_flat(x,2,3)
>>> pos
array([[1, 2, 3],
[2, 2, 3],
[3, 2, 3]])
>>> c_shape
(3,)
>>> pos1, c_shape1 = args_flat([1,2,3])
>>> pos1
array([[1, 2, 3]])
>>> c_shape1 is None
True
>>> pos1, c_shape1 = args_flat(1,2,3)
>>> pos1
array([[1, 2, 3]])
>>> c_shape1
()
>>> pos1, c_shape1 = args_flat([1],2,3)
>>> pos1
array([[1, 2, 3]])
>>> c_shape1
(1,)
'''
nargin = len(args)
if (nargin == 1): # pos
pos = np.atleast_2d(args[0])
_assert((pos.shape[1] == 3) and (pos.ndim == 2),
'POS array must be of shape N x 3!')
return pos, None
elif nargin == 3:
x, y, z = np.broadcast_arrays(*args[:3])
c_shape = x.shape
return np.vstack((x.ravel(), y.ravel(), z.ravel())).T, c_shape
else:
raise ValueError('Number of arguments must be 1 or 3!')
def index2sub(shape, index, order='C'):
'''
Returns Multiple subscripts from linear index.
Parameters
----------
shape : array-like
shape of array
index :
linear index into array
order : {'C','F'}, optional
The order of the linear index.
'C' means C (row-major) order.
'F' means Fortran (column-major) order.
By default, 'C' order is used.
This function is used to determine the equivalent subscript values
corresponding to a given single index into an array.
Example
-------
>>> shape = (3,3,4)
>>> a = np.arange(np.prod(shape)).reshape(shape)
>>> order = 'C'
>>> a[1, 2, 3]
23
>>> i = sub2index(shape, 1, 2, 3, order=order)
>>> a.ravel(order)[i]
23
>>> index2sub(shape, i, order=order)
(1, 2, 3)
See also
--------
sub2index
'''
return np.unravel_index(index, shape, order=order)
def sub2index(shape, *subscripts, **kwds):
'''
Returns linear index from multiple subscripts.
Parameters
----------
shape : array-like
shape of array
*subscripts :
subscripts into array
order : {'C','F'}, optional
The order of the linear index.
'C' means C (row-major) order.
'F' means Fortran (column-major) order.
By default, 'C' order is used.
This function is used to determine the equivalent single index
corresponding to a given set of subscript values into an array.
Example
-------
>>> shape = (3,3,4)
>>> a = np.arange(np.prod(shape)).reshape(shape)
>>> order = 'C'
>>> i = sub2index(shape, 1, 2, 3, order=order)
>>> a[1, 2, 3]
23
>>> a.ravel(order)[i]
23
>>> index2sub(shape, i, order=order)
(1, 2, 3)
See also
--------
index2sub
'''
return np.ravel_multi_index(subscripts, shape, **kwds)
def is_numlike(obj):
'return true if *obj* looks like a number'
try:
obj + 1
except TypeError:
return False
else:
return True
class JITImport(object):
'''
Just In Time Import of module
Example
-------
>>> np = JITImport('numpy')
>>> np.exp(0)==1.0
True
'''
def __init__(self, module_name):
self._module_name = module_name
self._module = None
def __getattr__(self, attr):
try:
return getattr(self._module, attr)
except:
if self._module is None:
self._module = __import__(self._module_name, None, None, ['*'])
# assert(isinstance(self._module, types.ModuleType), 'module')
return getattr(self._module, attr)
else:
raise
class DotDict(dict):
''' Implement dot access to dict values
Example
-------
>>> d = DotDict(test1=1,test2=3)
>>> d.test1
1
'''
__getattr__ = dict.__getitem__
class Bunch(object):
''' Implement keyword argument initialization of class
Example
-------
>>> d = Bunch(test1=1,test2=3)
>>> d.test1
1
'''
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
def keys(self):
return self.__dict__.keys()
def update(self, ** kwargs):
self.__dict__.update(kwargs)
def printf(format, *args): # @ReservedAssignment
sys.stdout.write(format % args)
def sub_dict_select(somedict, somekeys):
'''
Extracting a Subset from Dictionary
Example
--------
# Update options dict from keyword arguments if
# the keyword exists in options
>>> opt = dict(arg1=2, arg2=3)
>>> kwds = dict(arg2=100,arg3=1000)
>>> sub_dict = sub_dict_select(kwds,opt.keys())
>>> opt.update(sub_dict)
>>> opt
{'arg1': 2, 'arg2': 100}
See also
--------
dict_intersection
'''
# slower: validKeys = set(somedict).intersection(somekeys)
return dict((k, somedict[k]) for k in somekeys if k in somedict)
def parse_kwargs(options, **kwargs):
'''
Update options dict from keyword arguments if the keyword exists in options
Example
>>> opt = dict(arg1=2, arg2=3)
>>> opt = parse_kwargs(opt,arg2=100)
>>> print(opt)
{'arg1': 2, 'arg2': 100}
>>> opt2 = dict(arg2=101)
>>> opt = parse_kwargs(opt,**opt2)
See also sub_dict_select
'''
newopts = sub_dict_select(kwargs, options.keys())
if len(newopts) > 0:
options.update(newopts)
return options
def detrendma(x, L):
"""
Removes a trend from data using a moving average
of size 2*L+1. If 2*L+1 > len(x) then the mean is removed
Parameters
----------
x : vector or matrix of column vectors
of data
L : scalar, integer
defines the size of the moving average window
Returns
-------
y : ndarray
detrended data
Examples
--------
>>> import wafo.misc as wm
>>> import pylab as plt
>>> exp = plt.exp; cos = plt.cos; randn = plt.randn
>>> x = plt.linspace(0,1,200)
>>> y = exp(x)+cos(5*2*pi*x)+1e-1*randn(x.size)
>>> y0 = wm.detrendma(y,20); tr = y-y0
>>> h = plt.plot(x, y, x, y0, 'r', x, exp(x), 'k', x, tr, 'm')
>>> plt.close('all')
See also
--------
Reconstruct
"""
if L <= 0:
raise ValueError('L must be positive')
if L != round(L):
raise ValueError('L must be an integer')
x1 = np.atleast_1d(x)
if x1.shape[0] == 1:
x1 = x1.ravel()
n = x1.shape[0]
if n < 2 * L + 1: # only able to remove the mean
return x1 - x1.mean(axis=0)
mn = x1[0:2 * L + 1].mean(axis=0)
y = np.empty_like(x1)
y[0:L] = x1[0:L] - mn
ix = np.r_[L:(n - L)]
trend = ((x1[ix + L] - x1[ix - L]) / (2 * L + 1)).cumsum(axis=0) + mn
y[ix] = x1[ix] - trend
y[n - L::] = x1[n - L::] - trend[-1]
return y
def ecross(t, f, ind, v=0):
'''
Extracts exact level v crossings
ECROSS interpolates t and f linearly to find the exact level v
crossings, i.e., the points where f(t0) = v
Parameters
----------
t,f : vectors
of arguments and functions values, respectively.
ind : ndarray of integers
indices to level v crossings as found by findcross.
v : scalar or vector (of size(ind))
defining the level(s) to cross.
Returns
-------
t0 : vector
of exact level v crossings.
Example
-------
>>> from matplotlib import pylab as plt
>>> import wafo.misc as wm
>>> ones = np.ones
>>> t = np.linspace(0,7*np.pi,250)
>>> x = np.sin(t)
>>> ind = wm.findcross(x,0.75)
>>> ind
array([ 9, 25, 80, 97, 151, 168, 223, 239])
>>> t0 = wm.ecross(t,x,ind,0.75)
>>> np.abs(t0 - np.array([0.84910514, 2.2933879 , 7.13205663, 8.57630119,
... 13.41484739, 14.85909194, 19.69776067, 21.14204343]))<1e-7
array([ True, True, True, True, True, True, True, True], dtype=bool)
>>> a = plt.plot(t, x, '.', t[ind], x[ind], 'r.', t, ones(t.shape)*0.75,
... t0, ones(t0.shape)*0.75, 'g.')
>>> plt.close('all')
See also
--------
findcross
'''
# Tested on: Python 2.5
# revised pab Feb2004
# By pab 18.06.2001
return (t[ind] + (v - f[ind]) * (t[ind + 1] - t[ind]) /
(f[ind + 1] - f[ind]))
def _findcross(xn):
'''Return indices to zero up and downcrossings of a vector
'''
if clib is not None:
ind, m = clib.findcross(xn, 0.0)
return ind[:m]
n = len(xn)
iz, = (xn == 0).nonzero()
if len(iz) > 0:
# Trick to avoid turning points on the crossinglevel.
if iz[0] == 0:
if len(iz) == n:
warnings.warn('All values are equal to crossing level!')
return zeros(0, dtype=np.int)
diz = diff(iz)
if len(diz) > 0 and (diz > 1).any():
ix = iz[(diz > 1).argmax()]
else:
ix = iz[-1]
# x(ix) is a up crossing if x(1:ix) = v and x(ix+1) > v.
# x(ix) is a downcrossing if x(1:ix) = v and x(ix+1) < v.
xn[0:ix + 1] = -xn[ix + 1]
iz = iz[ix + 1::]
for ix in iz.tolist():
xn[ix] = xn[ix - 1]
# indices to local level crossings ( without turningpoints)
ind, = (xn[:n - 1] * xn[1:] < 0).nonzero()
return ind
def xor(a, b):
"""
Return True only when inputs differ.
"""
return a ^ b
def findcross(x, v=0.0, kind=None):
'''
Return indices to level v up and/or downcrossings of a vector
Parameters
----------
x : array_like
vector with sampled values.
v : scalar, real
level v.
kind : string
defines type of wave or crossing returned. Possible options are
'dw' : downcrossing wave
'uw' : upcrossing wave
'cw' : crest wave
'tw' : trough wave
'd' : downcrossings only
'u' : upcrossings only
None : All crossings will be returned
Returns
-------
ind : array-like
indices to the crossings in the original sequence x.
Example
-------
>>> from matplotlib import pylab as plt
>>> import wafo.misc as wm
>>> ones = np.ones
>>> findcross([0, 1, -1, 1],0)
array([0, 1, 2])
>>> v = 0.75
>>> t = np.linspace(0,7*np.pi,250)
>>> x = np.sin(t)
>>> ind = wm.findcross(x,v) # all crossings
>>> ind
array([ 9, 25, 80, 97, 151, 168, 223, 239])
>>> t0 = plt.plot(t,x,'.',t[ind],x[ind],'r.', t, ones(t.shape)*v)
>>> ind2 = wm.findcross(x,v,'u')
>>> ind2
array([ 9, 80, 151, 223])
>>> t0 = plt.plot(t[ind2],x[ind2],'o')
>>> plt.close('all')
See also
--------
crossdef
wavedef
'''
xn = np.int8(sign(atleast_1d(x).ravel() - v)) # @UndefinedVariable
ind = _findcross(xn)
if ind.size == 0:
warnings.warn('No level v = %0.5g crossings found in x' % v)
return ind
if kind not in ('du', 'all', None):
if kind == 'd': # downcrossings only
t_0 = int(xn[ind[0] + 1] > 0)
ind = ind[t_0::2]
elif kind == 'u': # upcrossings only
t_0 = int(xn[ind[0] + 1] < 0)
ind = ind[t_0::2]
elif kind in ('dw', 'uw', 'tw', 'cw'):
# make sure the first is a level v down-crossing
# if wdef=='dw' or wdef=='tw'
# or make sure the first is a level v up-crossing
# if wdef=='uw' or wdef=='cw'
first_is_down_crossing = int(xn[ind[0]] > xn[ind[0] + 1])
if xor(first_is_down_crossing, kind in ('dw', 'tw')):
ind = ind[1::]
# make sure the number of troughs and crests are according to the
# wavedef, i.e., make sure length(ind) is odd if dw or uw
# and even if tw or cw
is_odd = mod(ind.size, 2)
if xor(is_odd, kind in ('dw', 'uw')):
ind = ind[:-1]
else:
raise ValueError('Unknown wave/crossing definition!')
return ind
def findextrema(x):
'''
Return indices to minima and maxima of a vector
Parameters
----------
x : vector with sampled values.
Returns
-------
ind : indices to minima and maxima in the original sequence x.
Examples
--------
>>> import numpy as np
>>> import pylab as plt
>>> import wafo.misc as wm
>>> t = np.linspace(0,7*np.pi,250)
>>> x = np.sin(t)
>>> ind = wm.findextrema(x)
>>> a = plt.plot(t,x,'.',t[ind],x[ind],'r.')
>>> plt.close('all')
See also
--------
findcross
crossdef
'''
xn = atleast_1d(x).ravel()
return findcross(diff(xn), 0.0) + 1
def findpeaks(data, n=2, min_h=None, min_p=0.0):
'''
Find peaks of vector or matrix possibly rainflow filtered
Parameters
----------
data = matrix or vector
n = The n highest peaks are found (if exist). (default 2)
min_h = The threshold in the rainflowfilter (default 0.05*range(S(:))).
A zero value will return all the peaks of S.
min_p = 0..1, Only the peaks that are higher than
min_p*max(max(S)) min_p*(the largest peak in S)
are returned (default 0).
Returns
ix =
linear index to peaks of S
Example:
Find highest 8 peaks that are not
less that 0.3*"global max" and have
rainflow amplitude larger than 5.
>>> import numpy as np
>>> import wafo.misc as wm
>>> x = np.arange(0,10,0.01)
>>> data = x**2+10*np.sin(3*x)+0.5*np.sin(50*x)
>>> wm.findpeaks(data, n=8, min_h=5, min_p=0.3)
array([908, 694, 481])
See also
--------
findtp
'''
S = np.atleast_1d(data)
smax = S.max()
if min_h is None:
smin = S.min()
min_h = 0.05 * (smax - smin)
ndim = S.ndim
S = np.atleast_2d(S)
nrows, mcols = S.shape
# Finding turningpoints of the spectrum
# Returning only those with rainflowcycle heights greater than h_min
indP = [] # indices to peaks
ind = []
for iy in range(nrows): # % find all peaks
TuP = findtp(S[iy], min_h)
if len(TuP):
ind = TuP[1::2] # ; % extract indices to maxima only
else: # % did not find any , try maximum
ind = np.atleast_1d(S[iy].argmax())
if ndim > 1:
if iy == 0:
ind2 = np.flatnonzero(S[iy, ind] > S[iy + 1, ind])
elif iy == nrows - 1:
ind2 = np.flatnonzero(S[iy, ind] > S[iy - 1, ind])
else:
ind2 = np.flatnonzero((S[iy, ind] > S[iy - 1, ind]) &
(S[iy, ind] > S[iy + 1, ind]))
if len(ind2):
indP.append((ind[ind2] + iy * mcols))
if ndim > 1:
ind = np.hstack(indP) if len(indP) else []
if len(ind) == 0:
return []
peaks = S.take(ind)
ind2 = peaks.argsort()[::-1]
# keeping only the Np most significant peak frequencies.
nmax = min(n, len(ind))
ind = ind[ind2[:nmax]]
if (min_p > 0):
# Keeping only peaks larger than min_p percent relative to the maximum
# peak
ind = ind[(S.take(ind) > min_p * smax)]
return ind
def findrfc_astm(tp):
"""
Return rainflow counted cycles
Nieslony's Matlab implementation of the ASTM standard practice for rainflow
counting ported to a Python C module.
Parameters
----------
tp : array-like
vector of turningpoints (NB! Only values, not sampled times)
Returns
-------
sig_rfc : array-like
array of shape (n,3) with:
sig_rfc[:,0] Cycles amplitude
sig_rfc[:,1] Cycles mean value
sig_rfc[:,2] Cycle type, half (=0.5) or full (=1.0)
"""
y1 = atleast_1d(tp).ravel()
sig_rfc, cnr = clib.findrfc3_astm(y1)
# the sig_rfc was constructed too big in rainflow.rf3, so
# reduce the sig_rfc array as done originally by a matlab mex c function
n = len(sig_rfc)
sig_rfc = sig_rfc.__getslice__(0, n - cnr[0])
# sig_rfc holds the actual rainflow counted cycles, not the indices
return sig_rfc
def findrfc(tp, h=0.0, method='clib'):
'''
Return indices to rainflow cycles of a sequence of TP.
Parameters
-----------
tp : array-like
vector of turningpoints (NB! Only values, not sampled times)
h : real scalar
rainflow threshold. If h>0, then all rainflow cycles with height
smaller than h are removed.
method : string, optional
'clib' 'None'
Specify 'clib' for calling the c_functions, otherwise fallback to
the Python implementation.
Returns
-------
ind : ndarray of int
indices to the rainflow cycles of the original sequence TP.
Example:
--------
>>> import matplotlib.pyplot as plt
>>> import wafo.misc as wm
>>> t = np.linspace(0,7*np.pi,250)
>>> x = np.sin(t)+0.1*np.sin(50*t)
>>> ind = wm.findextrema(x)
>>> ti, tp = t[ind], x[ind]
>>> a = plt.plot(t,x,'.',ti,tp,'r.')
>>> ind1 = wm.findrfc(tp,0.3); ind1
array([ 0, 9, 32, 53, 74, 95, 116, 137])
>>> ind2 = wm.findrfc(tp,0.3, method=''); ind2
array([ 0, 9, 32, 53, 74, 95, 116, 137])
>>> a = plt.plot(ti[ind1],tp[ind1])
>>> plt.close('all')
See also
--------
rfcfilter,
findtp.
'''
# TODO: merge rfcfilter and findrfc
y1 = atleast_1d(tp).ravel()
n = len(y1)
ind = zeros(0, dtype=np.int)
ix = 0
if y1[0] > y1[1]:
# first is a max, ignore it
y = y1[1::]
NC = floor((n - 1) / 2) - 1
Tstart = 1
else:
y = y1
NC = floor(n / 2) - 1
Tstart = 0
if (NC < 1):
return ind # No RFC cycles*/
if (y[0] > y[1]) and (y[1] > y[2]):
warnings.warn('This is not a sequence of turningpoints, exit')
return ind
if (y[0] < y[1]) and (y[1] < y[2]):
warnings.warn('This is not a sequence of turningpoints, exit')
return ind
if clib is None or method not in ('clib'):
ind = zeros(n, dtype=np.int)
NC = np.int(NC)
for i in xrange(NC):
Tmi = Tstart + 2 * i
Tpl = Tstart + 2 * i + 2
xminus = y[2 * i]
xplus = y[2 * i + 2]
if(i != 0):
j = i - 1
while ((j >= 0) and (y[2 * j + 1] <= y[2 * i + 1])):
if (y[2 * j] < xminus):
xminus = y[2 * j]
Tmi = Tstart + 2 * j
j -= 1
if (xminus >= xplus):
if (y[2 * i + 1] - xminus >= h):
ind[ix] = Tmi
ix += 1
ind[ix] = (Tstart + 2 * i + 1)
ix += 1
# goto L180 continue
else:
j = i + 1
while (j < NC):
if (y[2 * j + 1] >= y[2 * i + 1]):
break # goto L170
if((y[2 * j + 2] <= xplus)):
xplus = y[2 * j + 2]
Tpl = (Tstart + 2 * j + 2)
j += 1
else:
if ((y[2 * i + 1] - xminus) >= h):
ind[ix] = Tmi
ix += 1
ind[ix] = (Tstart + 2 * i + 1)
ix += 1
# iy = i
continue
# goto L180
# L170:
if (xplus <= xminus):
if ((y[2 * i + 1] - xminus) >= h):
ind[ix] = Tmi
ix += 1
ind[ix] = (Tstart + 2 * i + 1)
ix += 1
elif ((y[2 * i + 1] - xplus) >= h):
ind[ix] = (Tstart + 2 * i + 1)
ix += 1
ind[ix] = Tpl
ix += 1
# L180:
# iy=i
# /* for i */
else:
ind, ix = clib.findrfc(y, h)
return np.sort(ind[:ix])
def mctp2rfc(fmM, fMm=None):
'''
Return Rainflow matrix given a Markov chain of turning points
computes f_rfc = f_mM + F_mct(f_mM).
Parameters
----------
fmM = the min2max Markov matrix,
fMm = the max2min Markov matrix,
Returns
-------
f_rfc = the rainflow matrix,
Example:
-------
>>> fmM = np.array([[ 0.0183, 0.0160, 0.0002, 0.0000, 0],
... [0.0178, 0.5405, 0.0952, 0, 0],
... [0.0002, 0.0813, 0, 0, 0],
... [0.0000, 0, 0, 0, 0],
... [ 0, 0, 0, 0, 0]])
>>> np.abs(mctp2rfc(fmM)-np.array([[2.669981e-02, 7.799700e-03,
... 4.906077e-07, 0.000000e+00, 0.000000e+00],
... [ 9.599629e-03, 5.485009e-01, 9.539951e-02, 0.000000e+00,
... 0.000000e+00],
... [ 5.622974e-07, 8.149944e-02, 0.000000e+00, 0.000000e+00,
... 0.000000e+00],
... [ 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00,
... 0.000000e+00],
... [ 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00,
... 0.000000e+00]]))<1.e-7
array([[ True, True, True, True, True],
[ True, True, True, True, True],
[ True, True, True, True, True],
[ True, True, True, True, True],
[ True, True, True, True, True]], dtype=bool)
'''
if fMm is None:
fmM = np.atleast_1d(fmM)
fMm = fmM.copy()
else:
fmM, fMm = np.atleast_1d(fmM, fMm)
f_mM, f_Mm = fmM.copy(), fMm.copy()
N = max(f_mM.shape)
f_max = np.sum(f_mM, axis=1)
f_min = np.sum(f_mM, axis=0)
f_rfc = zeros((N, N))
f_rfc[N - 2, 0] = f_max[N - 2]
f_rfc[0, N - 2] = f_min[N - 2]
for k in range(2, N - 1):
for i in range(1, k):
AA = f_mM[N - 1 - k:N - 1 - k + i, k - i:k]
AA1 = f_Mm[N - 1 - k:N - 1 - k + i, k - i:k]
RAA = f_rfc[N - 1 - k:N - 1 - k + i, k - i:k]
nA = max(AA.shape)
MA = f_max[N - 1 - k:N - 1 - k + i]
mA = f_min[k - i:k]
SA = AA.sum()
SRA = RAA.sum()
DRFC = SA - SRA
NT = min(mA[0] - sum(RAA[:, 0]), MA[0] - sum(RAA[0, :])) # check!
NT = max(NT, 0) # ??check
if NT > 1e-6 * max(MA[0], mA[0]):
NN = MA - np.sum(AA, axis=1) # T
e = (mA - np.sum(AA, axis=0)) # T
e = np.flipud(e)
PmM = np.rot90(AA.copy())
for j in range(nA):
norm = mA[nA - 1 - j]
if norm != 0:
PmM[j, :] = PmM[j, :] / norm
e[j] = e[j] / norm
# end
# end
fx = 0.0
if (max(abs(e)) > 1e-6 and
max(abs(NN)) > 1e-6 * max(MA[0], mA[0])):
PMm = AA1.copy()
for j in range(nA):
norm = MA[j]
if norm != 0:
PMm[j, :] = PMm[j, :] / norm
# end
# end
PMm = np.fliplr(PMm)
A = PMm
B = PmM
if nA == 1:
fx = NN * (A / (1 - B * A) * e)
else:
rh = np.eye(A.shape[0]) - np.dot(B, A)
# least squares
fx = np.dot(NN, np.dot(A, linalg.solve(rh, e)))
# end
# end
f_rfc[N - 1 - k, k - i] = fx + DRFC
# check2=[ DRFC fx]
# pause
else:
f_rfc[N - 1 - k, k - i] = 0.0
# end
# end
m0 = max(0, f_min[0] - np.sum(f_rfc[N - k + 1:N, 0]))
M0 = max(0, f_max[N - 1 - k] - np.sum(f_rfc[N - 1 - k, 1:k]))
f_rfc[N - 1 - k, 0] = min(m0, M0)
# n_loops_left=N-k+1
# end
for k in range(1, N):
M0 = max(0, f_max[0] - np.sum(f_rfc[0, N - k:N]))
m0 = max(0, f_min[N - 1 - k] - np.sum(f_rfc[1:k + 1, N - 1 - k]))
f_rfc[0, N - 1 - k] = min(m0, M0)
# end
# %clf
# %subplot(1,2,2)
# %pcolor(levels(paramm),levels(paramM),flipud(f_mM))
# % title('Markov matrix')
# % ylabel('max'), xlabel('min')
# %axis([paramm(1) paramm(2) paramM(1) paramM(2)])
# %axis('square')
#
# %subplot(1,2,1)
# %pcolor(levels(paramm),levels(paramM),flipud(f_rfc))
# % title('Rainflow matrix')
# % ylabel('max'), xlabel('rfc-min')
# %axis([paramm(1) paramm(2) paramM(1) paramM(2)])
# %axis('square')
return f_rfc
def rfcfilter(x, h, method=0):
"""
Rainflow filter a signal.
Parameters
-----------
x : vector
Signal. [nx1]
h : real, scalar
Threshold for rainflow filter.
method : scalar, integer
0 : removes cycles with range < h. (default)
1 : removes cycles with range <= h.
Returns
--------
y = Rainflow filtered signal.
Examples:
---------
# 1. Filtered signal y is the turning points of x.
>>> import wafo.data as data
>>> import wafo.misc as wm
>>> x = data.sea()
>>> y = wm.rfcfilter(x[:,1], h=0, method=1)
>>> np.all(np.abs(y[0:5]-np.array([-1.2004945 , 0.83950546, -0.09049454,
... -0.02049454, -0.09049454]))<1e-7)
True
>>> y.shape
(2172,)
# 2. This removes all rainflow cycles with range less than 0.5.
>>> y1 = wm.rfcfilter(x[:,1], h=0.5)
>>> y1.shape
(863,)
>>> np.all(np.abs(y1[0:5]-np.array([-1.2004945 , 0.83950546, -0.43049454,
... 0.34950546, -0.51049454]))<1e-7)
True
>>> ind = wm.findtp(x[:,1], h=0.5)
>>> y2 = x[ind,1]
>>> y2[0:5]
array([-1.2004945 , 0.83950546, -0.43049454, 0.34950546, -0.51049454])
>>> y2[-5::]
array([ 0.83950546, -0.64049454, 0.65950546, -1.0004945 , 0.91950546])
See also
--------
findrfc
"""
# TODO merge rfcfilter and findrfc
y = atleast_1d(x).ravel()
n = len(y)
t = zeros(n, dtype=np.int)
j = 0
t0 = 0
y0 = y[t0]
z0 = 0
def aleb(a, b):
return a <= b
def altb(a, b):
return a < b
if method == 0:
cmpfun1 = aleb
cmpfun2 = altb
else:
cmpfun1 = altb
cmpfun2 = aleb
# The rainflow filter
for tim1, yi in enumerate(y[1::]):
fpi = y0 + h
fmi = y0 - h
ti = tim1 + 1
# yi = y[ti]
if z0 == 0:
if cmpfun1(yi, fmi):
z1 = -1
elif cmpfun1(fpi, yi):
z1 = +1
else:
z1 = 0
t1, y1 = (t0, y0) if z1 == 0 else (ti, yi)
else:
if (((z0 == +1) & cmpfun1(yi, fmi)) |
((z0 == -1) & cmpfun2(yi, fpi))):
z1 = -1
elif (((z0 == +1) & cmpfun2(fmi, yi)) |
((z0 == -1) & cmpfun1(fpi, yi))):
z1 = +1
else:
warnings.warn('Something wrong, i=%d' % tim1)
# Update y1
if z1 != z0:
t1, y1 = ti, yi
elif z1 == -1:
# y1 = min([y0 xi])
t1, y1 = (t0, y0) if y0 < yi else (ti, yi)
elif z1 == +1:
# y1 = max([y0 xi])
t1, y1 = (t0, y0) if y0 > yi else (ti, yi)
# Update y if y0 is a turning point
if abs(z0 - z1) == 2:
j += 1
t[j] = t0
# Update t0, y0, z0
t0, y0, z0 = t1, y1, z1
# end
# Update y if last y0 is greater than (or equal) threshold
if cmpfun1(h, abs(y0 - y[t[j]])):
j += 1
t[j] = t0
return y[t[:j + 1]]
def findtp(x, h=0.0, kind=None):
'''
Return indices to turning points (tp) of data, optionally rainflowfiltered.
Parameters
----------
x : vector
signal
h : real, scalar
rainflow threshold
if h<0, then ind = range(len(x))
if h=0, then tp is a sequence of turning points (default)
if h>0, then all rainflow cycles with height smaller than
h are removed.
kind : string
defines the type of wave or indicate the ASTM rainflow counting method.
Possible options are 'astm' 'mw' 'Mw' or 'none'.
If None all rainflow filtered min and max
will be returned, otherwise only the rainflow filtered
min and max, which define a wave according to the
wave definition, will be returned.
Returns
-------
ind : arraylike
indices to the turning points in the original sequence.
Example:
--------
>>> import pylab as plt
>>> import wafo.misc as wm
>>> t = np.linspace(0,30,500).reshape((-1,1))
>>> x = np.hstack((t, np.cos(t) + 0.3 * np.sin(5*t)))
>>> x1 = x[0:100,:]
>>> itp = wm.findtp(x1[:,1],0,'Mw')
>>> itph = wm.findtp(x1[:,1],0.3,'Mw')
>>> tp = x1[itp,:]
>>> tph = x1[itph,:]
>>> a = plt.plot(x1[:,0],x1[:,1],
... tp[:,0],tp[:,1],'ro',
... tph[:,0],tph[:,1],'k.')
>>> plt.close('all')
>>> itp
array([ 5, 18, 24, 38, 46, 57, 70, 76, 91, 98, 99])
>>> itph
array([91])
See also
---------
findtc
findcross
findextrema
findrfc
'''
n = len(x)
if h < 0.0:
return arange(n)
ind = findextrema(x)
if ind.size < 2:
return None
# In order to get the exact up-crossing intensity from rfc by
# mm2lc(tp2mm(rfc)) we have to add the indices to the last value
# (and also the first if the sequence of turning points does not start
# with a minimum).
if kind == 'astm':
# the Nieslony approach always put the first loading point as the first
# turning point.
# add the first turning point is the first of the signal
if x[ind[0]] != x[0]:
ind = np.r_[0, ind, n - 1]
else: # only add the last point of the signal
ind = np.r_[ind, n - 1]
else:
if x[ind[0]] > x[ind[1]]: # adds indices to first and last value
ind = r_[0, ind, n - 1]
else: # adds index to the last value
ind = r_[ind, n - 1]
if h > 0.0:
ind1 = findrfc(x[ind], h)
ind = ind[ind1]
if kind in ('mw', 'Mw'):
# make sure that the first is a Max if wdef == 'Mw'
# or make sure that the first is a min if wdef == 'mw'
first_is_max = (x[ind[0]] > x[ind[1]])
remove_first = xor(first_is_max, kind.startswith('Mw'))
if remove_first:
ind = ind[1::]
# make sure the number of minima and Maxima are according to the
# wavedef. i.e., make sure Nm=length(ind) is odd
if (mod(ind.size, 2)) != 1:
ind = ind[:-1]
return ind
def findtc(x_in, v=None, kind=None):
"""
Return indices to troughs and crests of data.
Parameters
----------
x : vector
surface elevation.
v : real scalar
reference level (default v = mean of x).
kind : string
defines the type of wave. Possible options are
'dw', 'uw', 'tw', 'cw' or None.
If None indices to all troughs and crests will be returned,
otherwise only the paired ones will be returned
according to the wavedefinition.
Returns
--------
tc_ind : vector of ints
indices to the trough and crest turningpoints of sequence x.
v_ind : vector of ints
indices to the level v crossings of the original
sequence x. (d,u)
Example:
--------
>>> import pylab as plt
>>> import wafo.misc as wm
>>> t = np.linspace(0,30,500).reshape((-1,1))
>>> x = np.hstack((t, np.cos(t)))
>>> x1 = x[0:200,:]
>>> itc, iv = wm.findtc(x1[:,1],0,'dw')
>>> tc = x1[itc,:]
>>> a = plt.plot(x1[:,0],x1[:,1],tc[:,0],tc[:,1],'ro')
>>> plt.close('all')
See also
--------
findtp
findcross,
wavedef
"""
x = atleast_1d(x_in)
if v is None:
v = x.mean()
v_ind = findcross(x, v, kind)
n_c = v_ind.size
if n_c <= 2:
warnings.warn('There are no waves!')
return zeros(0, dtype=np.int), zeros(0, dtype=np.int)
# determine the number of trough2crest (or crest2trough) cycles
is_even = mod(n_c + 1, 2)
n_tc = int((n_c - 1 - is_even) / 2)
# allocate variables before the loop increases the speed
ind = zeros(n_c - 1, dtype=np.int)
first_is_down_crossing = (x[v_ind[0]] > x[v_ind[0] + 1])
if first_is_down_crossing:
for i in xrange(n_tc):
# trough
j = 2 * i
ind[j] = x[v_ind[j] + 1:v_ind[j + 1] + 1].argmin()
# crest
ind[j + 1] = x[v_ind[j + 1] + 1:v_ind[j + 2] + 1].argmax()
if (2 * n_tc + 1 < n_c) and (kind in (None, 'tw')):
# trough
ind[n_c - 2] = x[v_ind[n_c - 2] + 1:v_ind[n_c - 1]].argmin()
else: # the first is a up-crossing
for i in xrange(n_tc):
# crest
j = 2 * i
ind[j] = x[v_ind[j] + 1:v_ind[j + 1] + 1].argmax()
# trough
ind[j + 1] = x[v_ind[j + 1] + 1:v_ind[j + 2] + 1].argmin()
if (2 * n_tc + 1 < n_c) and (kind in (None, 'cw')):
# crest
ind[n_c - 2] = x[v_ind[n_c - 2] + 1:v_ind[n_c - 1]].argmax()
return v_ind[:n_c - 1] + ind + 1, v_ind
def findoutliers(x, zcrit=0.0, dcrit=None, ddcrit=None, verbose=False):
"""
Return indices to spurious points of data
Parameters
----------
x : vector
of data values.
zcrit : real scalar
critical distance between consecutive points.
dcrit : real scalar
critical distance of Dx used for determination of spurious
points. (Default 1.5 standard deviation of x)
ddcrit : real scalar
critical distance of DDx used for determination of spurious
points. (Default 1.5 standard deviation of x)
Returns
-------
inds : ndarray of integers
indices to spurious points.
indg : ndarray of integers
indices to the rest of the points.
Notes
-----
Consecutive points less than zcrit apart are considered as spurious.
The point immediately after and before are also removed. Jumps greater than
dcrit in Dxn and greater than ddcrit in D^2xn are also considered as
spurious.
(All distances to be interpreted in the vertical direction.)
Another good choice for dcrit and ddcrit are:
dcrit = 5*dT and ddcrit = 9.81/2*dT**2
where dT is the timestep between points.
Examples
--------
>>> import numpy as np
>>> import wafo.misc as wm
>>> t = np.linspace(0,30,500).reshape((-1,1))
>>> xx = np.hstack((t, np.cos(t)))
>>> dt = np.diff(xx[:2,0])
>>> dcrit = 5*dt
>>> ddcrit = 9.81/2*dt*dt
>>> zcrit = 0
>>> [inds, indg] = wm.findoutliers(xx[:,1],zcrit,dcrit,ddcrit,verbose=True)
Found 0 spurious positive jumps of Dx
Found 0 spurious negative jumps of Dx
Found 0 spurious positive jumps of D^2x
Found 0 spurious negative jumps of D^2x
Found 0 consecutive equal values
Found the total of 0 spurious points
#waveplot(xx,'-',xx(inds,:),1,1,1)
See also
--------
waveplot, reconstruct
"""
# finding outliers
findjumpsDx = True # find jumps in Dx
# two point spikes and Spikes dcrit above/under the
# previous and the following point are spurios.
findSpikes = False # find spikes
findDspikes = False # find double (two point) spikes
findjumpsD2x = True # find jumps in D^2x
findNaN = True # % find missing values
xn = asarray(x).flatten()
if xn.size < 2:
raise ValueError('The vector must have more than 2 elements!')
ind = zeros(0, dtype=int)
# indg=[]
indmiss = isnan(xn)
if findNaN and indmiss.any():
ind, = nonzero(indmiss)
if verbose:
print('Found %d missing points' % ind.size)
xn[indmiss] = 0. # %set NaN's to zero
if dcrit is None:
dcrit = 1.5 * xn.std()
if verbose:
print('dcrit is set to %g' % dcrit)
if ddcrit is None:
ddcrit = 1.5 * xn.std()
if verbose:
print('ddcrit is set to %g' % ddcrit)
dxn = diff(xn)
ddxn = diff(dxn)
if findSpikes: # finding spurious spikes
tmp, = nonzero((dxn[:-1] > dcrit) * (dxn[1::] < -dcrit) |
(dxn[:-1] < -dcrit) * (dxn[1::] > dcrit))
if tmp.size > 0:
tmp = tmp + 1
ind = hstack((ind, tmp))
if verbose:
print('Found %d spurious spikes' % tmp.size)
if findDspikes: # ,% finding spurious double (two point) spikes
tmp, = nonzero((dxn[:-2] > dcrit) * (dxn[2::] < -dcrit) |
(dxn[:-2] < -dcrit) * (dxn[2::] > dcrit))
if tmp.size > 0:
tmp = tmp + 1
ind = hstack((ind, tmp, tmp + 1)) # %removing both points
if verbose:
print('Found %d spurious two point (double) spikes' % tmp.size)
if findjumpsDx: # ,% finding spurious jumps in Dx
tmp, = nonzero(dxn > dcrit)
if verbose:
print('Found %d spurious positive jumps of Dx' % tmp.size)
if tmp.size > 0:
ind = hstack((ind, tmp + 1)) # removing the point after the jump
tmp, = nonzero(dxn < -dcrit)
if verbose:
print('Found %d spurious negative jumps of Dx' % tmp.size)
if tmp.size > 0:
ind = hstack((ind, tmp)) # removing the point before the jump
if findjumpsD2x: # ,% finding spurious jumps in D^2x
tmp, = nonzero(ddxn > ddcrit)
if tmp.size > 0:
tmp = tmp + 1
ind = hstack((ind, tmp)) # removing the jump
if verbose:
print('Found %d spurious positive jumps of D^2x' % tmp.size)
tmp, = nonzero(ddxn < -ddcrit)
if tmp.size > 0:
tmp = tmp + 1
ind = hstack((ind, tmp)) # removing the jump
if verbose:
print('Found %d spurious negative jumps of D^2x' % tmp.size)
if zcrit >= 0.0:
# finding consecutive values less than zcrit apart.
indzeros = (abs(dxn) <= zcrit)
indz, = nonzero(indzeros)
if indz.size > 0:
indz = indz + 1
# finding the beginning and end of consecutive equal values
indtr, = nonzero((diff(indzeros)))
indtr = indtr + 1
# indices to consecutive equal points
# removing the point before + all equal points + the point after
if True:
ind = hstack((ind, indtr - 1, indz, indtr, indtr + 1))
else: # % removing all points + the point after
ind = hstack((ind, indz, indtr, indtr + 1))
if verbose:
if zcrit == 0.:
print('Found %d consecutive equal values' % indz.size)
else:
print('Found %d consecutive values less than %g apart.' %
(indz.size, zcrit))
indg = ones(xn.size, dtype=bool)
if ind.size > 1:
ind = unique(ind)
indg[ind] = 0
indg, = nonzero(indg)
if verbose:
print('Found the total of %d spurious points' % ind.size)
return ind, indg
def common_shape(*args, ** kwds):
'''
Return the common shape of a sequence of arrays
Parameters
-----------
*args : arraylike
sequence of arrays
**kwds :
shape
Returns
-------
shape : tuple
common shape of the elements of args.
Raises
------
An error is raised if some of the arrays do not conform
to the common shape according to the broadcasting rules in numpy.
Examples
--------
>>> import numpy as np
>>> import wafo.misc as wm
>>> A = np.ones((4,1))
>>> B = 2
>>> C = np.ones((1,5))*5
>>> wm.common_shape(A,B,C)
(4, 5)
>>> wm.common_shape(A,B,C,shape=(3,4,1))
(3, 4, 5)
See also
--------
broadcast, broadcast_arrays
'''
args = map(asarray, args)
shapes = [x.shape for x in args]
shape = kwds.get('shape')
if shape is not None:
if not isinstance(shape, (list, tuple)):
shape = (shape,)
shapes.append(tuple(shape))
if len(set(shapes)) == 1:
# Common case where nothing needs to be broadcasted.
return tuple(shapes[0])
shapes = [list(s) for s in shapes]
nds = [len(s) for s in shapes]
biggest = max(nds)
# Go through each array and prepend dimensions of length 1 to each of the
# shapes in order to make the number of dimensions equal.
for i in range(len(shapes)):
diff = biggest - nds[i]
if diff > 0:
shapes[i] = [1] * diff + shapes[i]
# Check each dimension for compatibility. A dimension length of 1 is
# accepted as compatible with any other length.
c_shape = []
for axis in range(biggest):
lengths = [s[axis] for s in shapes]
unique = set(lengths + [1])
if len(unique) > 2:
# There must be at least two non-1 lengths for this axis.
raise ValueError("shape mismatch: two or more arrays have "
"incompatible dimensions on axis %r." % (axis,))
elif len(unique) == 2:
# There is exactly one non-1 length.
# The common shape will take this value.
unique.remove(1)
new_length = unique.pop()
c_shape.append(new_length)
else:
# Every array has a length of 1 on this axis. Strides can be left
# alone as nothing is broadcasted.
c_shape.append(1)
return tuple(c_shape)
def argsreduce(condition, * args):
""" Return the elements of each input array that satisfy some condition.
Parameters
----------
condition : array_like
An array whose nonzero or True entries indicate the elements of each
input array to extract. The shape of 'condition' must match the common
shape of the input arrays according to the broadcasting rules in numpy.
arg1, arg2, arg3, ... : array_like
one or more input arrays.
Returns
-------
narg1, narg2, narg3, ... : ndarray
sequence of extracted copies of the input arrays converted to the same
size as the nonzero values of condition.
Example
-------
>>> import wafo.misc as wm
>>> import numpy as np
>>> rand = np.random.random_sample
>>> A = rand((4,5))
>>> B = 2
>>> C = rand((1,5))
>>> cond = np.ones(A.shape)
>>> [A1,B1,C1] = wm.argsreduce(cond,A,B,C)
>>> B1.shape
(20,)
>>> cond[2,:] = 0
>>> [A2,B2,C2] = wm.argsreduce(cond,A,B,C)
>>> B2.shape
(15,)
See also
--------
numpy.extract
"""
newargs = atleast_1d(*args)
if not isinstance(newargs, list):
newargs = [newargs, ]
expand_arr = (condition == condition)
return [extract(condition, arr1 * expand_arr) for arr1 in newargs]
def stirlerr(n):
'''
Return error of Stirling approximation,
i.e., log(n!) - log( sqrt(2*pi*n)*(n/exp(1))**n )
Example
-------
>>> import wafo.misc as wm
>>> np.abs(wm.stirlerr(2)- 0.0413407)<1e-7
array([ True], dtype=bool)
See also
---------
binom
Reference
-----------
Catherine Loader (2000).
Fast and Accurate Computation of Binomial Probabilities
<http://lists.gnu.org/archive/html/octave-maintainers/2011-09/pdfK0uKOST642.pdf>
'''
S0 = 0.083333333333333333333 # /* 1/12 */
S1 = 0.00277777777777777777778 # /* 1/360 */
S2 = 0.00079365079365079365079365 # /* 1/1260 */
S3 = 0.000595238095238095238095238 # /* 1/1680 */
S4 = 0.0008417508417508417508417508 # /* 1/1188 */
n1 = atleast_1d(n)
y = gammaln(n1 + 1) - log(sqrt(2 * pi * n1) * (n1 / exp(1)) ** n1)
nn = n1 * n1
n500 = 500 < n1
y[n500] = (S0 - S1 / nn[n500]) / n1[n500]
n80 = logical_and(80 < n1, n1 <= 500)
if any(n80):
y[n80] = (S0 - (S1 - S2 / nn[n80]) / nn[n80]) / n1[n80]
n35 = logical_and(35 < n1, n1 <= 80)
if any(n35):
nn35 = nn[n35]
y[n35] = (S0 - (S1 - (S2 - S3 / nn35) / nn35) / nn35) / n1[n35]
n15 = logical_and(15 < n1, n1 <= 35)
if any(n15):
nn15 = nn[n15]
y[n15] = (
S0 - (S1 - (S2 - (S3 - S4 / nn15) / nn15) / nn15) / nn15) / n1[n15]
return y
def getshipchar(value=None, property="max_deadweight", # @ReservedAssignment
** kwds): # @IgnorePep8
'''
Return ship characteristics from value of one ship-property
Parameters
----------
value : scalar
value to use in the estimation.
property : string
defining the ship property used in the estimation. Options are:
'max_deadweight','length','beam','draft','service_speed',
'propeller_diameter'.
The length was found from statistics of 40 vessels of size 85 to
100000 tonn. An exponential curve through 0 was selected, and the
factor and exponent that minimized the standard deviation of the
relative error was selected. (The error returned is the same for
any ship.) The servicespeed was found for ships above 1000 tonns
only. The propeller diameter formula is from [1]_.
Returns
-------
sc : dict
containing estimated mean values and standard-deviations of ship
characteristics:
max_deadweight [kkg], (weight of cargo, fuel etc.)
length [m]
beam [m]
draught [m]
service_speed [m/s]
propeller_diameter [m]
Example
---------
>>> import wafo.misc as wm
>>> sc = wm.getshipchar(10,'service_speed')
>>> for key in sorted(sc): key, sc[key]
('beam', 29.0)
('beamSTD', 2.9000000000000004)
('draught', 9.6)
('draughtSTD', 2.112)
('length', 216.0)
('lengthSTD', 2.011309883194276)
('max_deadweight', 30969.0)
('max_deadweightSTD', 3096.9)
('propeller_diameter', 6.761165385916601)
('propeller_diameterSTD', 0.20267047566705432)
('service_speed', 10.0)
('service_speedSTD', 0)
Other units: 1 ft = 0.3048 m and 1 knot = 0.5144 m/s
Reference
---------
.. [1] Gray and Greeley, (1978),
"Source level model for propeller blade rate radiation for the world's
merchant fleet", Bolt Beranek and Newman Technical Memorandum No. 458.
'''
if value is None:
names = kwds.keys()
if len(names) != 1:
raise ValueError('Only on keyword')
property = names[0] # @ReservedAssignment
value = kwds[property]
value = np.atleast_1d(value)
valid_props = dict(l='length', b='beam', d='draught', m='max_deadweigth',
s='service_speed', p='propeller_diameter')
prop = valid_props[property[0]]
prop2max_dw = dict(length=lambda x: (x / 3.45) ** (2.5),
beam=lambda x: ((x / 1.78) ** (1 / 0.27)),
draught=lambda x: ((x / 0.8) ** (1 / 0.24)),
service_speed=lambda x: ((x / 1.14) ** (1 / 0.21)),
propeller_diameter=lambda x: (((x / 0.12) ** (4 / 3) /
3.45) ** (2.5)))
max_deadweight = prop2max_dw.get(prop, lambda x: x)(value)
propertySTD = prop + 'STD'
length = round(3.45 * max_deadweight ** 0.40)
length_err = length ** 0.13
beam = round(1.78 * max_deadweight ** 0.27 * 10) / 10
beam_err = beam * 0.10
draught = round(0.80 * max_deadweight ** 0.24 * 10) / 10
draught_err = draught * 0.22
# S = round(2/3*(L)**0.525)
speed = round(1.14 * max_deadweight ** 0.21 * 10) / 10
speed_err = speed * 0.10
p_diam = 0.12 * length ** (3.0 / 4.0)
p_diam_err = 0.12 * length_err ** (3.0 / 4.0)
max_deadweight = round(max_deadweight)
max_deadweightSTD = 0.1 * max_deadweight
shipchar = OrderedDict(beam=beam, beamSTD=beam_err,
draught=draught, draughtSTD=draught_err,
length=length, lengthSTD=length_err,
max_deadweight=max_deadweight,
max_deadweightSTD=max_deadweightSTD,
propeller_diameter=p_diam,
propeller_diameterSTD=p_diam_err,
service_speed=speed, service_speedSTD=speed_err)
shipchar[propertySTD] = 0
return shipchar
def binomln(z, w):
'''
Natural Logarithm of binomial coefficient.
CALL binomln(z,w)
BINOMLN computes the natural logarithm of the binomial
function for corresponding elements of Z and W. The arrays Z and
W must be real and nonnegative. Both arrays must be the same size,
or either can be scalar. BETALOGE is defined as:
y = LOG(binom(Z,W)) = gammaln(Z)-gammaln(W)-gammaln(Z-W)
and is obtained without computing BINOM(Z,W). Since the binom
function can range over very large or very small values, its
logarithm is sometimes more useful.
This implementation is more accurate than the log(BINOM(Z,W) implementation
for large arguments
Example
-------
>>> abs(binomln(3,2)- 1.09861229)<1e-7
array([ True], dtype=bool)
See also
--------
binom
'''
# log(n!) = stirlerr(n) + log( sqrt(2*pi*n)*(n/exp(1))**n )
# y = gammaln(z+1)-gammaln(w+1)-gammaln(z-w+1)
zpw = z - w
return (stirlerr(z + 1) - stirlerr(w + 1) - 0.5 * log(2 * pi) -
(w + 0.5) * log1p(w) + (z + 0.5) * log1p(z) - stirlerr(zpw + 1) -
(zpw + 0.5) * log1p(zpw) + 1)
def betaloge(z, w):
'''
Natural Logarithm of beta function.
CALL betaloge(z,w)
BETALOGE computes the natural logarithm of the beta
function for corresponding elements of Z and W. The arrays Z and
W must be real and nonnegative. Both arrays must be the same size,
or either can be scalar. BETALOGE is defined as:
y = LOG(BETA(Z,W)) = gammaln(Z)+gammaln(W)-gammaln(Z+W)
and is obtained without computing BETA(Z,W). Since the beta
function can range over very large or very small values, its
logarithm is sometimes more useful.
This implementation is more accurate than the BETALN implementation
for large arguments
Example
-------
>>> import wafo.misc as wm
>>> abs(wm.betaloge(3,2)+2.48490665)<1e-7
array([ True], dtype=bool)
See also
--------
betaln, beta
'''
# y = gammaln(z)+gammaln(w)-gammaln(z+w)
zpw = z + w
return (stirlerr(z) + stirlerr(w) + 0.5 * log(2 * pi) +
(w - 0.5) * log(w) + (z - 0.5) * log(z) - stirlerr(zpw) -
(zpw - 0.5) * log(zpw))
# stirlings approximation:
# (-(zpw-0.5).*log(zpw) +(w-0.5).*log(w)+(z-0.5).*log(z) +0.5*log(2*pi))
# return y
def gravity(phi=45):
''' Returns the constant acceleration of gravity
GRAVITY calculates the acceleration of gravity
using the international gravitational formulae [1]_:
g = 9.78049*(1+0.0052884*sin(phir)**2-0.0000059*sin(2*phir)**2)
where
phir = phi*pi/180
Parameters
----------
phi : {float, int}
latitude in degrees
Returns
--------
g : ndarray
acceleration of gravity [m/s**2]
Examples
--------
>>> import wafo.misc as wm
>>> import numpy as np
>>> phi = np.linspace(0,45,5)
>>> np.abs(wm.gravity(phi)-np.array([ 9.78049 , 9.78245014, 9.78803583,
... 9.79640552, 9.80629387]))<1.e-7
array([ True, True, True, True, True], dtype=bool)
See also
--------
wdensity
References
----------
.. [1] Irgens, Fridtjov (1987)
"Formelsamling i mekanikk:
statikk, fasthetsl?re, dynamikk fluidmekanikk"
tapir forlag, University of Trondheim,
ISBN 82-519-0786-1, pp 19
'''
phir = phi * pi / 180. # change from degrees to radians
return 9.78049 * (1. + 0.0052884 * sin(phir) ** 2. -
0.0000059 * sin(2 * phir) ** 2.)
def dea3(v0, v1, v2):
'''
Extrapolate a slowly convergent sequence
Parameters
----------
v0, v1, v2 : array-like
3 values of a convergent sequence to extrapolate
Returns
-------
result : array-like
extrapolated value
abserr : array-like
absolute error estimate
Description
-----------
DEA3 attempts to extrapolate nonlinearly to a better estimate
of the sequence's limiting value, thus improving the rate of
convergence. The routine is based on the epsilon algorithm of
P. Wynn, see [1]_.
Example
-------
# integrate sin(x) from 0 to pi/2
>>> import numpy as np
>>> import numdifftools as nd
>>> Ei= np.zeros(3)
>>> linfun = lambda k : np.linspace(0,np.pi/2.,2.**(k+5)+1)
>>> for k in np.arange(3):
... x = linfun(k)
... Ei[k] = np.trapz(np.sin(x),x)
>>> [En, err] = nd.dea3(Ei[0], Ei[1], Ei[2])
>>> truErr = Ei-1.
>>> (truErr, err, En)
(array([ -2.00805680e-04, -5.01999079e-05, -1.25498825e-05]),
array([ 0.00020081]), array([ 1.]))
See also
--------
dea
Reference
---------
.. [1] C. Brezinski (1977)
"Acceleration de la convergence en analyse numerique",
"Lecture Notes in Math.", vol. 584,
Springer-Verlag, New York, 1977.
'''
E0, E1, E2 = np.atleast_1d(v0, v1, v2)
abs = np.abs # @ReservedAssignment
max = np.maximum # @ReservedAssignment
delta2, delta1 = E2 - E1, E1 - E0
err2, err1 = abs(delta2), abs(delta1)
tol2, tol1 = max(abs(E2), abs(E1)) * _EPS, max(abs(E1), abs(E0)) * _EPS
with warnings.catch_warnings():
warnings.simplefilter("ignore") # ignore division by zero and overflow
ss = 1.0 / delta2 - 1.0 / delta1
smallE2 = (abs(ss * E1) <= 1.0e-3).ravel()
result = 1.0 * E2
abserr = err1 + err2 + abs(E2) * _EPS * 10.0
converged = (err1 <= tol1) & (err2 <= tol2).ravel() | smallE2
k4, = (1 - converged).nonzero()
if k4.size > 0:
result[k4] = E1[k4] + 1.0 / ss[k4]
abserr[k4] = err1[k4] + err2[k4] + abs(result[k4] - E2[k4])
return result, abserr
def nextpow2(x):
'''
Return next higher power of 2
Example
-------
>>> import wafo.misc as wm
>>> wm.nextpow2(10)
4
>>> wm.nextpow2(np.arange(5))
3
'''
t = isscalar(x) or len(x)
if (t > 1):
f, n = frexp(t)
else:
f, n = frexp(abs(x))
if (f == 0.5):
n = n - 1
return n
def discretize(fun, a, b, tol=0.005, n=5, method='linear'):
'''
Automatic discretization of function
Parameters
----------
fun : callable
function to discretize
a,b : real scalars
evaluation limits
tol : real, scalar
absoute error tolerance
n : scalar integer
number of values
method : string
defining method of gridding, options are 'linear' and 'adaptive'
Returns
-------
x : discretized values
y : fun(x)
Example
-------
>>> import wafo.misc as wm
>>> import numpy as np
>>> import pylab as plt
>>> x,y = wm.discretize(np.cos, 0, np.pi)
>>> xa,ya = wm.discretize(np.cos, 0, np.pi, method='adaptive')
>>> t = plt.plot(x, y, xa, ya, 'r.')
plt.show()
>>> plt.close('all')
'''
if method.startswith('a'):
return _discretize_adaptive(fun, a, b, tol, n)
else:
return _discretize_linear(fun, a, b, tol, n)
def _discretize_linear(fun, a, b, tol=0.005, n=5):
'''
Automatic discretization of function, linear gridding
'''
x = linspace(a, b, n)
y = fun(x)
err0 = inf
err = 10000
nmax = 2 ** 20
while (err != err0 and err > tol and n < nmax):
err0 = err
x0 = x
y0 = y
n = 2 * (n - 1) + 1
x = linspace(a, b, n)
y = fun(x)
y00 = interp(x, x0, y0)
err = 0.5 * amax(abs((y00 - y) / (abs(y00 + y) + _TINY)))
return x, y
def _discretize_adaptive(fun, a, b, tol=0.005, n=5):
'''
Automatic discretization of function, adaptive gridding.
'''
n += (mod(n, 2) == 0) # make sure n is odd
x = linspace(a, b, n)
fx = fun(x)
n2 = (n - 1) / 2
erri = hstack((zeros((n2, 1)), ones((n2, 1)))).ravel()
err = erri.max()
err0 = inf
# while (err != err0 and err > tol and n < nmax):
for j in range(50):
if err != err0 and np.any(erri > tol):
err0 = err
# find top errors
I, = where(erri > tol)
# double the sample rate in intervals with the most error
y = (vstack(((x[I] + x[I - 1]) / 2,
(x[I + 1] + x[I]) / 2)).T).ravel()
fy = fun(y)
fy0 = interp(y, x, fx)
erri = 0.5 * (abs((fy0 - fy) / (abs(fy0 + fy) + _TINY)))
err = erri.max()
x = hstack((x, y))
I = x.argsort()
x = x[I]
erri = hstack((zeros(len(fx)), erri))[I]
fx = hstack((fx, fy))[I]
else:
break
else:
warnings.warn('Recursion level limit reached j=%d' % j)
return x, fx
def polar2cart(theta, rho, z=None):
'''
Transform polar coordinates into 2D cartesian coordinates.
Returns
-------
x, y : array-like
Cartesian coordinates, x = rho*cos(theta), y = rho*sin(theta)
See also
--------
cart2polar
'''
x, y = rho * cos(theta), rho * sin(theta)
if z is None:
return x, y
else:
return x, y, z
pol2cart = polar2cart
def cart2polar(x, y, z=None):
''' Transform 2D cartesian coordinates into polar coordinates.
Returns
-------
theta : array-like
radial angle, arctan2(y,x)
rho : array-like
radial distance, sqrt(x**2+y**2)
See also
--------
polar2cart
'''
t, r = arctan2(y, x), hypot(x, y)
if z is None:
return t, r
else:
return t, r, z
cart2pol = cart2polar
def ndgrid(*args, **kwargs):
"""
Same as calling meshgrid with indexing='ij' (see meshgrid for
documentation).
"""
kwargs['indexing'] = 'ij'
return meshgrid(*args, ** kwargs)
def trangood(x, f, min_n=None, min_x=None, max_x=None, max_n=inf):
"""
Make sure transformation is efficient.
Parameters
------------
x, f : array_like
input transform function, (x,f(x)).
min_n : scalar, int
minimum number of points in the good transform.
(Default x.shape[0])
min_x : scalar, real
minimum x value to transform. (Default min(x))
max_x : scalar, real
maximum x value to transform. (Default max(x))
max_n : scalar, int
maximum number of points in the good transform
(default inf)
Returns
-------
x, f : array_like
the good transform function.
TRANGOOD interpolates f linearly and optionally
extrapolate it linearly outside the range of x
with X uniformly spaced.
See also
---------
tranproc,
numpy.interp
"""
xo, fo = atleast_1d(x, f)
# n = xo.size
if (xo.ndim != 1):
raise ValueError('x must be a vector.')
if (fo.ndim != 1):
raise ValueError('f must be a vector.')
i = xo.argsort()
xo = xo[i]
fo = fo[i]
del i
dx = diff(xo)
if (any(dx <= 0)):
raise ValueError('Duplicate x-values not allowed.')
nf = fo.shape[0]
if max_x is None:
max_x = xo[-1]
if min_x is None:
min_x = xo[0]
if min_n is None:
min_n = nf
if (min_n < 2):
min_n = 2
if (max_n < 2):
max_n = 2
ddx = diff(dx)
xn = xo[-1]
x0 = xo[0]
L = float(xn - x0)
if ((nf < min_n) or (max_n < nf) or any(abs(ddx) > 10 * _EPS * (L))):
# pab 07.01.2001: Always choose the stepsize df so that
# it is an exactly representable number.
# This is important when calculating numerical derivatives and is
# accomplished by the following.
dx = L / (min(min_n, max_n) - 1)
dx = (dx + 2.) - 2.
xi = arange(x0, xn + dx / 2., dx)
# New call pab 11.11.2000: This is much quicker
fo = interp(xi, xo, fo)
xo = xi
# x is now uniformly spaced
dx = xo[1] - xo[0]
# Extrapolate linearly outside the range of ff
if (min_x < xo[0]):
x1 = dx * arange(floor((min_x - xo[0]) / dx), -2)
f2 = fo[0] + x1 * (fo[1] - fo[0]) / (xo[1] - xo[0])
fo = hstack((f2, fo))
xo = hstack((x1 + xo[0], xo))
if (max_x > xo[-1]):
x1 = dx * arange(1, ceil((max_x - xo[-1]) / dx) + 1)
f2 = f[-1] + x1 * (f[-1] - f[-2]) / (xo[-1] - xo[-2])
fo = hstack((fo, f2))
xo = hstack((xo, x1 + xo[-1]))
return xo, fo
def tranproc(x, f, x0, *xi):
"""
Transforms process X and up to four derivatives
using the transformation f.
Parameters
----------
x,f : array-like
[x,f(x)], transform function, y = f(x).
x0, x1,...,xn : vectors
where xi is the i'th time derivative of x0. 0<=N<=4.
Returns
-------
y0, y1,...,yn : vectors
where yi is the i'th time derivative of y0 = f(x0).
By the basic rules of derivation:
Y1 = f'(X0)*X1
Y2 = f''(X0)*X1^2 + f'(X0)*X2
Y3 = f'''(X0)*X1^3 + f'(X0)*X3 + 3*f''(X0)*X1*X2
Y4 = f''''(X0)*X1^4 + f'(X0)*X4 + 6*f'''(X0)*X1^2*X2
+ f''(X0)*(3*X2^2 + 4*X1*X3)
The derivation of f is performed numerically with a central difference
method with linear extrapolation towards the beginning and end of f,
respectively.
Example
--------
Derivative of g and the transformed Gaussian model.
>>> import pylab as plt
>>> import wafo.misc as wm
>>> import wafo.transform.models as wtm
>>> tr = wtm.TrHermite()
>>> x = linspace(-5,5,501)
>>> g = tr(x)
>>> gder = wm.tranproc(x, g, x, ones(g.shape[0]))
>>> h = plt.plot(x, g, x, gder[1])
plt.plot(x,pdfnorm(g)*gder[1],x,pdfnorm(x))
plt.legend('Transformed model','Gaussian model')
>>> plt.close('all')
See also
--------
trangood.
"""
xo, fo, x0 = atleast_1d(x, f, x0)
xi = atleast_1d(*xi)
if not isinstance(xi, list):
xi = [xi, ]
N = len(xi) # N = number of derivatives
nmax = ceil((xo.ptp()) * 10 ** (7. / max(N, 1)))
xo, fo = trangood(xo, fo, min_x=min(x0), max_x=max(x0), max_n=nmax)
n = f.shape[0]
# y = x0.copy()
xu = (n - 1) * (x0 - xo[0]) / (xo[-1] - xo[0])
fi = asarray(floor(xu), dtype=int)
fi = where(fi == n - 1, fi - 1, fi)
xu = xu - fi
y0 = fo[fi] + (fo[fi + 1] - fo[fi]) * xu
y = y0
if N > 0:
y = [y0]
hn = xo[1] - xo[0]
if hn ** N < sqrt(_EPS):
msg = ('Numerical problems may occur for the derivatives in ' +
'tranproc.\n' +
'The sampling of the transformation may be too small.')
warnings.warn(msg)
# Transform X with the derivatives of f.
fxder = zeros((N, x0.size))
fder = vstack((xo, fo))
for k in range(N): # Derivation of f(x) using a difference method.
n = fder.shape[-1]
fder = vstack([(fder[0, 0:n - 1] + fder[0, 1:n]) / 2,
diff(fder[1, :]) / hn])
fxder[k] = tranproc(fder[0], fder[1], x0)
# Calculate the transforms of the derivatives of X.
# First time derivative of y: y1 = f'(x)*x1
y1 = fxder[0] * xi[0]
y.append(y1)
if N > 1:
# Second time derivative of y:
# y2 = f''(x)*x1.^2+f'(x)*x2
y2 = fxder[1] * xi[0] ** 2. + fxder[0] * xi[1]
y.append(y2)
if N > 2:
# Third time derivative of y:
# y3 = f'''(x)*x1.^3+f'(x)*x3 +3*f''(x)*x1*x2
y3 = fxder[2] * xi[0] ** 3 + fxder[0] * xi[2] + \
3 * fxder[1] * xi[0] * xi[1]
y.append(y3)
if N > 3:
# Fourth time derivative of y:
# y4 = f''''(x)*x1.^4+f'(x)*x4
# +6*f'''(x)*x1^2*x2+f''(x)*(3*x2^2+4x1*x3)
y4 = (fxder[3] * xi[0] ** 4. + fxder[0] * xi[3] +
6. * fxder[2] * xi[0] ** 2. * xi[1] +
fxder[1] * (3. * xi[1] ** 2. + 4. * xi[0] * xi[1]))
y.append(y4)
if N > 4:
warnings.warn('Transformation of derivatives of ' +
'order>4 not supported.')
return y # y0,y1,y2,y3,y4
def good_bins(data=None, range=None, num_bins=None, # @ReservedAssignment
num_data=None, odd=False, loose=True):
''' Return good bins for histogram
Parameters
----------
data : array-like
the data
range : (float, float)
minimum and maximum range of bins (default data.min(), data.max())
num_bins : scalar integer
approximate number of bins wanted
(default depending on num_data=len(data))
odd : bool
placement of bins (0 or 1) (default 0)
loose : bool
if True add extra space to min and max
if False the bins are made tight to the min and max
Example
-------
>>> import wafo.misc as wm
>>> wm.good_bins(range=(0,5), num_bins=6)
array([-1., 0., 1., 2., 3., 4., 5., 6.])
>>> wm.good_bins(range=(0,5), num_bins=6, loose=False)
array([ 0., 1., 2., 3., 4., 5.])
>>> wm.good_bins(range=(0,5), num_bins=6, odd=True)
array([-1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5])
>>> wm.good_bins(range=(0,5), num_bins=6, odd=True, loose=False)
array([-0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5])
'''
if data is not None:
x = np.atleast_1d(data)
num_data = len(x)
mn, mx = range if range else (x.min(), x.max())
if num_bins is None:
num_bins = np.ceil(4 * np.sqrt(np.sqrt(num_data)))
d = float(mx - mn) / num_bins * 2
e = np.floor(np.log(d) / np.log(10))
m = np.floor(d / 10 ** e)
if m > 5:
m = 5
elif m > 2:
m = 2
d = m * 10 ** e
mn = (np.floor(mn / d) - loose) * d - odd * d / 2
mx = (np.ceil(mx / d) + loose) * d + odd * d / 2
limits = np.arange(mn, mx + d / 2, d)
return limits
def plot_histgrm(data, bins=None, range=None, # @ReservedAssignment
normed=False, weights=None, lintype='b-'):
'''
Plot histogram
Parameters
-----------
data : array-like
the data
bins : int or sequence of scalars, optional
If an int, it defines the number of equal-width
bins in the given range (4 * sqrt(sqrt(len(data)), by default).
If a sequence, it defines the bin edges, including the
rightmost edge, allowing for non-uniform bin widths.
range : (float, float), optional
The lower and upper range of the bins. If not provided, range
is simply ``(data.min(), data.max())``. Values outside the range are
ignored.
normed : bool, optional
If False, the result will contain the number of samples in each bin.
If True, the result is the value of the probability *density* function
at the bin, normalized such that the *integral* over the range is 1.
weights : array_like, optional
An array of weights, of the same shape as `data`. Each value in `data`
only contributes its associated weight towards the bin count
(instead of 1). If `normed` is True, the weights are normalized,
so that the integral of the density over the range remains 1
lintype : specify color and lintype, see PLOT for possibilities.
Returns
-------
h : list
of plot-objects
Example
-------
>>> import pylab as plt
>>> import wafo.misc as wm
>>> import wafo.stats as ws
>>> R = ws.weibull_min.rvs(2,loc=0,scale=2, size=100)
>>> h0 = wm.plot_histgrm(R, 20, normed=True)
>>> x = np.linspace(-3,16,200)
>>> h1 = plt.plot(x,ws.weibull_min.pdf(x,2,0,2),'r')
>>> plt.close('all')
See also
--------
wafo.misc.good_bins
numpy.histogram
'''
x = np.atleast_1d(data)
if bins is None:
bins = np.ceil(4 * np.sqrt(np.sqrt(len(x))))
bin_, limits = np.histogram(
data, bins=bins, normed=normed, weights=weights)
limits.shape = (-1, 1)
xx = limits.repeat(3, axis=1)
xx.shape = (-1,)
xx = xx[1:-1]
bin_.shape = (-1, 1)
yy = bin_.repeat(3, axis=1)
# yy[0,0] = 0.0 # pdf
yy[:, 0] = 0.0 # histogram
yy.shape = (-1,)
yy = np.hstack((yy, 0.0))
return plotbackend.plot(xx, yy, lintype, limits, limits * 0)
def num2pistr(x, n=3):
'''
Convert a scalar to a text string in fractions of pi
if the numerator is less than 10 and not equal 0
and if the denominator is less than 10.
Parameters
----------
x = a scalar
n = maximum digits of precision. (default 3)
Returns
-------
xtxt = a text string in fractions of pi
Example
>>> import wafo.misc as wm
>>> wm.num2pistr(np.pi*3/4)=='3\\pi/4'
True
'''
frac = fractions.Fraction.from_float(x / pi).limit_denominator(10000000)
num = frac.numerator
den = frac.denominator
if (den < 10) and (num < 10) and (num != 0):
dtxt = '' if abs(den) == 1 else '/%d' % den
if abs(num) == 1: # % numerator
ntxt = '-' if num == -1 else ''
else:
ntxt = '%d' % num
xtxt = ntxt + r'\pi' + dtxt
else:
format = '%0.' + '%dg' % n # @ReservedAssignment
xtxt = format % x
return xtxt
def fourier(data, t=None, T=None, m=None, n=None, method='trapz'):
'''
Returns Fourier coefficients.
Parameters
----------
data : array-like
vector or matrix of row vectors with data points shape p x n.
t : array-like
vector with n values indexed from 1 to N.
T : real scalar, (default T = t[-1]-t[0])
primitive period of signal, i.e., smallest period.
m : scalar integer
defines no of harmonics desired (default M = N)
n : scalar integer
no of data points (default len(t))
method : string
integration method used
Returns
-------
a,b = Fourier coefficients size m x p
FOURIER finds the coefficients for a Fourier series representation
of the signal x(t) (given in digital form). It is assumed the signal
is periodic over T. N is the number of data points, and M-1 is the
number of coefficients.
The signal can be estimated by using M-1 harmonics by:
M-1
x[i] = 0.5*a[0] + sum (a[n]*c[n,i] + b[n]*s[n,i])
n=1
where
c[n,i] = cos(2*pi*(n-1)*t[i]/T)
s[n,i] = sin(2*pi*(n-1)*t[i]/T)
Note that a[0] is the "dc value".
Remaining values are a[1], a[2], ... , a[M-1].
Example
-------
>>> import wafo.misc as wm
>>> import numpy as np
>>> T = 2*np.pi
>>> t = np.linspace(0,4*T)
>>> x = np.sin(t)
>>> a, b = wm.fourier(x, t, T=T, m=5)
>>> np.abs(a.ravel())<1e-12
array([ True, True, True, True, True], dtype=bool)
>>> np.abs(b.ravel()-np.array([ 0., 4., 0., 0., 0.]))<1e-12
array([ True, True, True, True, True], dtype=bool)
See also
--------
fft
'''
x = np.atleast_2d(data)
p, n = x.shape
if t is None:
t = np.arange(n)
else:
t = np.atleast_1d(t)
n = len(t) if n is None else n
m = n if n is None else m
T = t[-1] - t[0] if T is None else T
if method.startswith('trapz'):
intfun = trapz
elif method.startswith('simp'):
intfun = simps
# Define the vectors for computing the Fourier coefficients
t.shape = (1, -1)
a = zeros((m, p))
b = zeros((m, p))
a[0] = intfun(x, t, axis=-1)
# Compute M-1 more coefficients
tmp = 2 * pi * t / T
# tmp = 2*pi*(0:N-1).'/(N-1);
for i in range(1, m):
a[i] = intfun(x * cos(i * tmp), t, axis=-1)
b[i] = intfun(x * sin(i * tmp), t, axis=-1)
a = a / pi
b = b / pi
# Alternative: faster for large M, but gives different results than above.
# nper = diff(t([1 end]))/T; %No of periods given
# if nper == round(nper):
# N1 = n/nper
# else:
# N1 = n
#
#
#
# Fourier coefficients by fft
# Fcof1 = 2*ifft(x(1:N1,:),[],1);
# Pcor = [1; exp(sqrt(-1)*(1:M-1).'*t(1))] # correction term to get
# # the correct integration limits
# Fcof = Fcof1(1:M,:).*Pcor(:,ones(1,P));
# a = real(Fcof(1:M,:));
# b = imag(Fcof(1:M,:));
return a, b
def hyp2f1_taylor(a, b, c, z, tol=1e-13, itermax=500):
a, b, c, z = np.broadcast_arrays(*np.atleast_1d(a, b, c, z))
shape = a.shape
ak, bk, ck, zk = [d.ravel() for d in (a, b, c, z)]
ajm1 = np.ones(ak.shape)
bjm2 = 0.5 * np.ones(ak.shape)
bjm1 = np.ones(ak.shape)
hout = np.zeros(ak.shape)
k0 = np.arange(len(ak))
for j in range(0, itermax):
aj = ajm1 * (ak + j) * (bk + j) / (ck + j) * zk / (j + 1)
bj = bjm1 + aj
h, err = dea3(bjm2, bjm1, bj)
k = np.flatnonzero(err > tol * np.abs(h))
hout[k0] = h
if len(k) == 0:
break
k0 = k0[k]
ak, bk, ck, zk = ak[k], bk[k], ck[k], zk[k]
ajm1 = aj[k]
bjm2 = bjm1[k]
bjm1 = bj[k]
else:
warnings.warn(('Reached %d limit! \n' +
'#%d values did not converge! Max error=%g') %
(j, len(k), np.max(err)))
return hout.reshape(shape)
def hyp2f1(a, b, c, z, rho=0.5):
e1 = gammaln(a)
e2 = gammaln(b)
e3 = gammaln(c)
e4 = gammaln(b - a)
e5 = gammaln(a - b)
e6 = gammaln(c - a)
e7 = gammaln(c - b)
e8 = gammaln(c - a - b)
e9 = gammaln(a + b - c)
_cmab = c - a - b
# ~(np.round(cmab) == cmab & cmab <= 0)
if abs(z) <= rho:
h = hyp2f1_taylor(a, b, c, z, 1e-15)
elif abs(1 - z) <= rho: # % Require that |arg(1-z)|<pi
h = exp(e3 + e8 - e6 - e7) * \
hyp2f1_taylor(a, b, a + b - c, 1 - z, 1e-15) \
+ (1 - z) ** (c - a - b) * exp(e3 + e9 - e1 - e2) \
* hyp2f1_taylor(c - a, c - b, c - a - b + 1, 1 - z, 1e-15)
elif abs(z / (z - 1)) <= rho:
h = (1 - z) ** (-a) \
* hyp2f1_taylor(a, c - b, c, (z / (z - 1)), 1e-15)
elif abs(1 / z) <= rho: # % Require that |arg(z)|<pi and |arg(1-z)|<pi
h = (-z + 0j) ** (-a) * exp(e3 + e4 - e2 - e6) \
* hyp2f1_taylor(a, a - c + 1, a - b + 1, 1. / z, 1e-15) \
+ (-z + 0j) ** (-b) * exp(e3 + e5 - e1 - e7) \
* hyp2f1_taylor(b - c + 1, b, b - a + 1, (1. / z), 1e-15)
elif abs(1. / (1 - z)) <= rho: # % Require that |arg(1-z)|<pi
h = (1 - z) ** (-a) * exp(e3 + e4 - e2 - e6) \
* hyp2f1_taylor(a, c - b, a - b + 1, (1. / (1 - z)), 1e-15)\
+ (1 - z) ** (-b) * exp(e3 + e5 - e1 - e7) \
* hyp2f1_taylor(b, c - a, b - a + 1, (1. / (1 - z)), 1e-15)
elif abs(1 - 1 / z) < rho: # % Require that |arg(z)|<pi and |arg(1-z)|<pi
h = z ** (-a) * exp(e3 + e8 - e6 - e7) \
* hyp2f1_taylor(a, a - c + 1, a + b - c + 1, (1 - 1 / z), 1e-15) \
+ z ** (a - c) * (1 - z) ** (c - a - b) * exp(e3 + e9 - e1 - e2) \
* hyp2f1_taylor(c - a, 1 - a, c - a - b + 1, (1 - 1 / z), 1e-15)
else:
warnings.warn('Another method is needed')
return h
def hyp2f1_wrong(a, b, c, z, tol=1e-13, itermax=500):
ajm1 = 0
bjm1 = 1
cjm1 = 1
xjm1 = np.ones(np.shape(c + a * b * z))
xjm2 = 2 * np.ones(xjm1.shape)
for j in range(1, itermax):
aj = (ajm1 + bjm1) * j * (c + j - 1)
bj = bjm1 * (a + j - 1) * (b + j - 1) * z
cj = cjm1 * j * (c + j - 1)
if np.any((aj == np.inf) | (bj == np.inf) | (cj == np.inf)):
break
xj = (aj + bj) / cj
h, err = dea3(xjm2, xjm1, xj)
if np.all(err <= tol * np.abs(h)) and j > 10:
break
xjm2 = xjm1
xjm1 = xj
else:
warnings.warn('Reached %d limit' % j)
return h
def hygfz(A, B, C, Z):
''' Return hypergeometric function for a complex argument, F(a,b,c,z)
Parameters
----------
a, b, c:
parameters where c <> 0,-1,-2,...
z :--- Complex argument
'''
X = np.real(Z)
Y = np.imag(Z)
EPS = 1.0e-15
L0 = C == np.round(C) and C < 0.0e0
L1 = abs(1.0 - X) < EPS and Y == 0.0 and C - A - B <= 0.0
L2 = abs(Z + 1.0) < EPS and abs(C - A + B - 1.0) < EPS
L3 = A == np.round(A) and A < 0.0
L4 = B == np.round(B) and B < 0.0
L5 = C - A == np.round(C - A) and C - A <= 0.0
L6 = C - B == np.round(C - B) and C - B <= 0.0
AA = A
BB = B
A0 = abs(Z)
if (A0 > 0.95):
EPS = 1.0e-8
PI = 3.141592653589793
EL = .5772156649015329
if (L0 or L1):
# 'The hypergeometric series is divergent'
return np.inf
NM = 0
if (A0 == 0.0 or A == 0.0 or B == 0.0):
ZHF = 1.0
elif (Z == 1.0 and C - A - B > 0.0):
GC = gamma(C)
GCAB = gamma(C - A - B)
GCA = gamma(C - A)
GCB = gamma(C - B)
ZHF = GC * GCAB / (GCA * GCB)
elif L2:
G0 = sqrt(PI) * 2.0 ** (-A)
G1 = gamma(C)
G2 = gamma(1.0 + A / 2.0 - B)
G3 = gamma(0.5 + 0.5 * A)
ZHF = G0 * G1 / (G2 * G3)
elif L3 or L4:
if (L3):
NM = int(np.round(abs(A)))
if (L4):
NM = int(np.round(abs(B)))
ZHF = 1.0
ZR = 1.0
for K in range(NM):
ZR = ZR * (A + K) * (B + K) / ((K + 1.) * (C + K)) * Z
ZHF = ZHF + ZR
elif L5 or L6:
if (L5):
NM = np.round(abs(C - A))
if (L6):
NM = np.round(abs(C - B))
ZHF = 1.0 + 0j
ZR = 1.0 + 0j
for K in range(NM):
ZR *= (C - A + K) * (C - B + K) / ((K + 1.) * (C + K)) * Z
ZHF = ZHF + ZR
ZHF = (1.0 - Z) ** (C - A - B) * ZHF
elif (A0 <= 1.0):
if (X < 0.0):
Z1 = Z / (Z - 1.0)
if (C > A and B < A and B > 0.0):
A = BB
B = AA
ZC0 = 1.0 / ((1.0 - Z) ** A)
ZHF = 1.0 + 0j
ZR0 = 1.0 + 0j
ZW = 0
for K in range(500):
ZR0 *= (A + K) * (C - B + K) / ((K + 1.0) * (C + K)) * Z1
ZHF += ZR0
if (abs(ZHF - ZW) < abs(ZHF) * EPS):
break
ZW = ZHF
ZHF = ZC0 * ZHF
elif (A0 >= 0.90):
ZW = 0.0
GM = 0.0
MCAB = np.round(C - A - B)
if (abs(C - A - B - MCAB) < EPS):
M = int(np.round(C - A - B))
GA = gamma(A)
GB = gamma(B)
GC = gamma(C)
GAM = gamma(A + M)
GBM = gamma(B + M)
PA = psi(A)
PB = psi(B)
if (M != 0):
GM = 1.0
for j in range(1, abs(M)):
GM *= j
RM = 1.0
for j in range(1, abs(M) + 1): # DO 35 J=1,abs(M)
RM *= j
ZF0 = 1.0
ZR0 = 1.0
ZR1 = 1.0
SP0 = 0.0
SP = 0.0
if (M >= 0):
ZC0 = GM * GC / (GAM * GBM)
ZC1 = -GC * (Z - 1.0) ** M / (GA * GB * RM)
for K in range(1, M):
ZR0 = ZR0 * \
(A + K - 1.) * (B + K - 1.) / \
(K * (K - M)) * (1. - Z)
ZF0 = ZF0 + ZR0
for K in range(M):
SP0 = SP0 + 1.0 / \
(A + K) + 1.0 / (B + K) - 1. / (K + 1.)
ZF1 = PA + PB + SP0 + 2.0 * EL + np.log(1.0 - Z)
for K in range(1, 501):
SP = SP + \
(1.0 - A) / (K * (A + K - 1.0)) + (
1.0 - B) / (K * (B + K - 1.0))
SM = 0.0
for J in range(1, M):
SM += (1.0 - A) / (
(J + K) * (A + J + K - 1.0)) + \
1.0 / (B + J + K - 1.0)
ZP = PA + PB + 2.0 * EL + SP + SM + np.log(1.0 - Z)
ZR1 = ZR1 * \
(A + M + K - 1.0) * (B + M + K - 1.0) / (
K * (M + K)) * (1.0 - Z)
ZF1 = ZF1 + ZR1 * ZP
if (abs(ZF1 - ZW) < abs(ZF1) * EPS):
break
ZW = ZF1
ZHF = ZF0 * ZC0 + ZF1 * ZC1
elif (M < 0):
M = -M
ZC0 = GM * GC / (GA * GB * (1.0 - Z) ** M)
ZC1 = -(-1) ** M * GC / (GAM * GBM * RM)
for K in range(1, M):
ZR0 = ZR0 * \
(A - M + K - 1.0) * (B - M + K - 1.0) / (
K * (K - M)) * (1.0 - Z)
ZF0 = ZF0 + ZR0
for K in range(1, M + 1):
SP0 = SP0 + 1.0 / K
ZF1 = PA + PB - SP0 + 2.0 * EL + np.log(1.0 - Z)
for K in range(1, 501):
SP = SP + \
(1.0 - A) / (K * (A + K - 1.0)) + (
1.0 - B) / (K * (B + K - 1.0))
SM = 0.0
for J in range(1, M + 1):
SM = SM + 1.0 / (J + K)
ZP = PA + PB + 2.0 * EL + SP - SM + np.log(1.0 - Z)
ZR1 = ZR1 * \
(A + K - 1.) * (B + K - 1.) / \
(K * (M + K)) * (1. - Z)
ZF1 = ZF1 + ZR1 * ZP
if (abs(ZF1 - ZW) < abs(ZF1) * EPS):
break
ZW = ZF1
ZHF = ZF0 * ZC0 + ZF1 * ZC1
else:
GA = gamma(A)
GB = gamma(B)
GC = gamma(C)
GCA = gamma(C - A)
GCB = gamma(C - B)
GCAB = gamma(C - A - B)
GABC = gamma(A + B - C)
ZC0 = GC * GCAB / (GCA * GCB)
ZC1 = GC * GABC / (GA * GB) * (1.0 - Z) ** (C - A - B)
ZHF = 0 + 0j
ZR0 = ZC0
ZR1 = ZC1
for K in range(1, 501):
ZR0 = ZR0 * \
(A + K - 1.) * (B + K - 1.) / \
(K * (A + B - C + K)) * (1. - Z)
ZR1 = ZR1 * \
(C - A + K - 1.0) * (C - B + K - 1.0) / (
K * (C - A - B + K)) * (1.0 - Z)
ZHF = ZHF + ZR0 + ZR1
if (abs(ZHF - ZW) < abs(ZHF) * EPS):
break
ZW = ZHF
ZHF = ZHF + ZC0 + ZC1
else:
ZW = 0.0
Z00 = 1.0 # + 0j
if (C - A < A and C - B < B):
Z00 = (1.0 - Z) ** (C - A - B)
A = C - A
B = C - B
ZHF = 1.0
ZR = 1.0
for K in range(1, 501):
ZR = ZR * \
(A + K - 1.0) * (B + K - 1.0) / (K * (C + K - 1.0)) * Z
ZHF = ZHF + ZR
if (abs(ZHF - ZW) <= abs(ZHF) * EPS):
break
ZW = ZHF
ZHF = Z00 * ZHF
elif (A0 > 1.0):
MAB = np.round(A - B)
if (abs(A - B - MAB) < EPS and A0 <= 1.1):
B = B + EPS
if (abs(A - B - MAB) > EPS):
GA = gamma(A)
GB = gamma(B)
GC = gamma(C)
GAB = gamma(A - B)
GBA = gamma(B - A)
GCA = gamma(C - A)
GCB = gamma(C - B)
ZC0 = GC * GBA / (GCA * GB * (-Z) ** A)
ZC1 = GC * GAB / (GCB * GA * (-Z) ** B)
ZR0 = ZC0
ZR1 = ZC1
ZHF = 0.0 + 0j
for K in range(1, 501):
ZR0 = ZR0 * (A + K - 1.0) * (A - C + K) / ((A - B + K) * K * Z)
ZR1 = ZR1 * (B + K - 1.0) * (B - C + K) / ((B - A + K) * K * Z)
ZHF = ZHF + ZR0 + ZR1
if (abs((ZHF - ZW) / ZHF) <= EPS):
break
ZW = ZHF
ZHF = ZHF + ZC0 + ZC1
else:
if (A - B < 0.0):
A = BB
B = AA
CA = C - A
CB = C - B
NCA = np.round(CA)
NCB = np.round(CB)
if (abs(CA - NCA) < EPS or abs(CB - NCB) < EPS):
C = C + EPS
GA = gamma(A)
GC = gamma(C)
GCB = gamma(C - B)
PA = psi(A)
PCA = psi(C - A)
PAC = psi(A - C)
MAB = np.round(A - B + EPS)
ZC0 = GC / (GA * (-Z) ** B)
GM = gamma(A - B)
ZF0 = GM / GCB * ZC0
ZR = ZC0
for K in range(1, MAB):
ZR = ZR * (B + K - 1.0) / (K * Z)
T0 = A - B - K
G0 = gamma(T0)
GCBK = gamma(C - B - K)
ZF0 = ZF0 + ZR * G0 / GCBK
if (MAB == 0):
ZF0 = 0.0 + 0j
ZC1 = GC / (GA * GCB * (-Z) ** A)
SP = -2.0 * EL - PA - PCA
for J in range(1, MAB + 1):
SP = SP + 1.0 / J
ZP0 = SP + np.log(-Z)
SQ = 1.0
for J in range(1, MAB + 1):
SQ = SQ * (B + J - 1.0) * (B - C + J) / J
ZF1 = (SQ * ZP0) * ZC1
ZR = ZC1
RK1 = 1.0
SJ1 = 0.0
W0 = 0.0
for K in range(1, 10001):
ZR = ZR / Z
RK1 = RK1 * (B + K - 1.0) * (B - C + K) / (K * K)
RK2 = RK1
for J in range(K + 1, K + MAB + 1):
RK2 = RK2 * (B + J - 1.0) * (B - C + J) / J
SJ1 = SJ1 + \
(A - 1.0) / (K * (A + K - 1.0)) + \
(A - C - 1.0) / (K * (A - C + K - 1.0))
SJ2 = SJ1
for J in range(K + 1, K + MAB + 1):
SJ2 = SJ2 + 1.0 / J
ZP = -2.0 * EL - PA - PAC + SJ2 - 1.0 / \
(K + A - C) - PI / np.tan(PI * (K + A - C)) + np.log(-Z)
ZF1 = ZF1 + RK2 * ZR * ZP
WS = abs(ZF1)
if (abs((WS - W0) / WS) < EPS):
break
W0 = WS
ZHF = ZF0 + ZF1
A = AA
B = BB
if (K > 150):
warnings.warn('Warning! You should check the accuracy')
return ZHF
# def hypgf(a, b, c, x, abseps=0, releps=1e-13, kmax=10000):
# '''HYPGF Hypergeometric function F(a,b,c,x)
#
# CALL: [y ,abserr] = hypgf(a,b,c,x,abseps,releps)
#
# y = F(a,b,c,x)
# abserr = absolute error estimate
# a,b,c,x = input parameters
# abseps = requested absolute error
# releps = requested relative error
#
# HYPGF calculates one solution to Gauss's hypergeometric differential
# equation:
#
# x*(1-x)Y''(x)+[c-(a+b+1)*x]*Y'(x)-a*b*Y(x) = 0
# where
# F(a,b,c,x) = Y1(x) = 1 + a*b*x/c + a*(a+1)*b*(b+1)*x^2/(c*(c+1))+....
#
#
# Many elementary functions are special cases of F(a,b,c,x):
# 1/(1-x) = F(1,1,1,x) = F(1,b,b,x) = F(a,1,a,x)
# (1+x)^n = F(-n,b,b,-x)
# atan(x) = x*F(.5,1,1.5,-x^2)
# asin(x) = x*F(.5,.5,1.5,x^2)
# log(x) = x*F(1,1,2,-x)
# log(1+x)-log(1-x) = 2*x*F(.5,1,1.5,x^2)
#
# NOTE: only real x, abs(x) < 1 and c~=0,-1,-2,... are allowed.
#
# Examples:
# x = linspace(-.99,.99)';
# [Sn1,err1] = hypgf(1,1,1,x)
# plot(x,abs(Sn1-1./(1-x)),'b',x,err1,'r'),set(gca,'yscale','log')
# [Sn2,err2] = hypgf(.5,.5,1.5,x.^2);
# plot(x,abs(x.*Sn2-asin(x)),'b',x,abs(x.*err2),'r')
# set(gca,'yscale','log')
#
#
# Reference:
# ---------
# Kreyszig, Erwin (1988)
# Advanced engineering mathematics
# John Wiley & Sons, sixth edition, pp 204.
# '''
# csize = common_shape(x, a, b, c)
# kmin = 2
# fsum = np.zeros(csize)
# delta = np.zeros(csize)
# err = np.zeros(csize)
#
# ok = ~((np.round(c) == c & c <= 0) | np.abs(x) > 1)
# if np.any(~ok):
# warnings.warn('HYPGF', 'Illegal input: c = 0,-1,-2,... or abs(x)>1')
# fsum[~ok] = np.NaN
# err[~ok] = np.NaN
#
# k0=find(ok & abs(x)==1);
# if any(k0)
# cmab = c(k0)-a(k0)-b(k0);
# fsum(k0) = exp(gammaln(c(k0))+gammaln(cmab)-...
# gammaln(c(k0)-a(k0))-gammaln(c(k0)-b(k0)));
# err(k0) = eps;
# k00 = find(real(cmab)<=0);
# if any(k00)
# err(k0(k00)) = nan;
# fsum(k0(k00)) = nan;
# end
# end
# k=find(ok & abs(x)<1);
# if any(k),
# delta(k) = ones(size(k));
# fsum(k) = delta(k);
#
# k1 = k;
# E = cell(1,3);
# E{3} = fsum(k);
# converge = 'n';
# for ix=0:Kmax-1,
# delta(k1) = delta(k1).*((a(k1)+ix)./(ix+1)).*((b(k1)+ix)./(c(k1)+ ix)).*x(k1); @IgnorePep8
# fsum(k1) = fsum(k1)+delta(k1);
#
# E(1:2) = E(2:3);
# E{3} = fsum(k1);
#
# if ix>Kmin
# if useDEA,
# [Sn, err(k1)] = dea3(E{:});
# k00 = find((abs(err(k1))) <= max(absEps,abs(relEps.*fsum(k1))));
# if any(k00)
# fsum(k1(k00)) = Sn(k00);
# end
# if (ix==Kmax-1)
# fsum(k1) = Sn;
# end
# k0 = (find((abs(err(k1))) > max(absEps,abs(relEps.*fsum(k1)))));
# if any(k0),% compute more terms
# %nk=length(k0);%# of values we have to compute again
# E{2} = E{2}(k0);
# E{3} = E{3}(k0);
# else
# converge='y';
# break;
# end
# else
# err(k1) = 10*abs(delta(k1));
# k0 = (find((abs(err(k1))) > max(absEps,abs(relEps.* ...
# fsum(k1)))));
# if any(k0),% compute more terms
# %nk=length(k0);%# of values we have to compute again
# else
# converge='y';
# break;
# end
# end
# k1 = k1(k0);
# end
# end
# if ~strncmpi(converge,'y',1)
# disp(sprintf('#%d values did not converge',length(k1)))
# end
# end
# %ix
# return
def _test_find_cross():
t = findcross([0, 0, 1, -1, 1], 0) # @UnusedVariable
def real_main0():
x = np.arange(10000)
y = np.arange(100).reshape(-1, 1)
np.broadcast_arrays(x, y, x, x, x, x, x, x, x, x)
def real_main():
x = np.arange(100000)
y = np.arange(100).reshape(-1, 1)
common_shape(x, y, x, x, x, x, x, x, x, x)
def profile_main1():
# This is the main function for profiling
# We've renamed our original main() above to real_main()
import cProfile
import pstats
prof = cProfile.Profile()
prof = prof.runctx("real_main()", globals(), locals())
print("<pre>")
stats = pstats.Stats(prof)
stats.sort_stats("time") # Or cumulative
stats.print_stats(80) # 80 = how many to print
# The rest is optional.
# stats.print_callees()
# stats.print_callers()
print("</pre>")
main = profile_main1
def test_docstrings():
# np.set_printoptions(precision=6)
import doctest
print('Testing docstrings in %s' % __file__)
doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE)
def test_hyp2f1():
# 1/(1-x) = F(1,1,1,x) = F(1,b,b,x) = F(a,1,a,x)
# (1+x)^n = F(-n,b,b,-x)
# atan(x) = x*F(.5,1,1.5,-x^2)
# asin(x) = x*F(.5,.5,1.5,x^2)
# log(x) = x*F(1,1,2,-x)
# log(1+x)-log(1-x) = 2*x*F(.5,1,1.5,x^2)
x = linspace(0., .7, 20)
y = hyp2f1_taylor(-1, -4, 1, .9)
_y2 = hygfz(-1, -4, 1, .9)
_y3 = hygfz(5, -300, 10, 0.5)
_y4 = hyp2f1_taylor(5, -300, 10, 0.5)
# y = hyp2f1(0.1, 0.2, 0.3, 0.5)
# y = hyp2f1(1, 1.5, 3, -4 +3j)
# y = hyp2f1(5, 7.5, 2.5, 5)
# fun = lambda x : 1./(1-x)
# x = .99
# y = hyp2f1(1,1,1,x)
# print(y-fun(x))
#
plt = plotbackend
plt.interactive(False)
plt.semilogy(x, np.abs(y - 1. / (1 - x)) + 1e-20, 'r')
plt.show()
if __name__ == "__main__":
test_docstrings()
# test_hyp2f1()