You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1976 lines
63 KiB
Python

#!/usr/bin/env python
# -------------------------------------------------------------------------
# Name: kdetools
# Purpose:
#
# Author: pab
#
# Created: 01.11.2008
# Copyright: (c) pab 2008
# Licence: LGPL
# -------------------------------------------------------------------------
from __future__ import absolute_import, division
# from abc import ABCMeta, abstractmethod
import copy
import warnings
import numpy as np
import scipy.stats
from scipy import interpolate, linalg, special
from numpy import pi, sqrt, atleast_2d, exp, meshgrid
from numpy.fft import fftn, ifftn
from wafo.misc import nextpow2
from wafo.containers import PlotData
from wafo.dctpack import dctn, idctn # , dstn, idstn
from wafo.plotbackend import plotbackend as plt
from wafo.testing import test_docstrings
from wafo.kdetools.kernels import iqrange, qlevels, Kernel
from wafo.kdetools.gridding import gridcount
import time
try:
from wafo import fig
except ImportError:
warnings.warn('fig import only supported on Windows')
__all__ = ['TKDE', 'KDE', 'kde_demo1', 'kde_demo2', 'test_docstrings',
'KRegression', 'BKRegression']
def _assert(cond, msg):
if not cond:
raise ValueError(msg)
def _assert_warn(cond, msg):
if not cond:
warnings.warn(msg)
def _invnorm(q):
return special.ndtri(q)
class _KDE(object):
""" Kernel-Density Estimator base class.
Parameters
----------
data : (# of dims, # of data)-array
datapoints to estimate from
hs : array-like (optional)
smooting parameter vector/matrix.
(default compute from data using kernel.get_smoothing function)
kernel : kernel function object.
kernel must have get_smoothing method
alpha : real scalar (optional)
sensitivity parameter (default 0 regular KDE)
A good choice might be alpha = 0.5 ( or 1/D)
alpha = 0 Regular KDE (hs is constant)
0 < alpha <= 1 Adaptive KDE (Make hs change)
Members
-------
d : int
number of dimensions
n : int
number of datapoints
Methods
-------
kde.eval_grid_fast(x0, x1,..., xd) : array
evaluate the estimated pdf on meshgrid(x0, x1,..., xd)
kde.eval_grid(x0, x1,..., xd) : array
evaluate the estimated pdf on meshgrid(x0, x1,..., xd)
kde.eval_points(points) : array
evaluate the estimated pdf on a provided set of points
kde(x0, x1,..., xd) : array
same as kde.eval_grid(x0, x1,..., xd)
"""
def __init__(self, data, hs=None, kernel=None, alpha=0.0, xmin=None,
xmax=None, inc=512):
self.dataset = atleast_2d(data)
self.kernel = kernel if kernel else Kernel('gauss')
self.xmin = xmin
self.xmax = xmax
self.hs = hs
self.inc = inc
self.alpha = alpha
self.initialize()
@property
def n(self):
return self.dataset.shape[1]
@property
def d(self):
return self.dataset.shape[0]
@property
def sigma(self):
"""minimum(stdev, 0.75 * interquartile-range)"""
iqr = iqrange(self.dataset, axis=-1)
sigma = np.minimum(np.std(self.dataset, axis=-1, ddof=1), iqr / 1.34)
return sigma
@property
def xmin(self):
return self._xmin
@xmin.setter
def xmin(self, xmin):
if xmin is None:
self._xmin = self.dataset.min(axis=-1) - 2 * self.sigma
else:
self._xmin = xmin * np.ones(self.d)
@property
def xmax(self):
return self._xmax
@xmax.setter
def xmax(self, xmax):
if xmax is None:
self._xmax = self.dataset.max(axis=-1) + 2 * self.sigma
else:
self._xmax = xmax * np.ones(self.d)
def _replace_negatives_with_default_hs(self, h):
get_default_hs = self.kernel.get_smoothing
ind, = np.where(h <= 0)
for i in ind.tolist():
h[i] = get_default_hs(self.dataset[i])
def _check_hs(self, h):
"""make sure it has the correct dimension and replace negative vals"""
h = np.atleast_1d(h)
if (len(h.shape) == 1) or (self.d == 1):
h = h * np.ones(self.d) if max(h.shape) == 1 else h.reshape(self.d)
self._replace_negatives_with_default_hs(h)
return h
def _invert_hs(self, h):
if (len(h.shape) == 1) or (self.d == 1):
determinant = h.prod()
inv_hs = np.diag(1.0 / h)
else: # fully general smoothing matrix
determinant = linalg.det(h)
_assert(0 < determinant,
'bandwidth matrix h must be positive definit!')
inv_hs = linalg.inv(h)
return inv_hs, determinant
@property
def hs(self):
return self._hs
@hs.setter
def hs(self, h):
if h is None:
h = self.kernel.get_smoothing(self.dataset)
h = self._check_hs(h)
inv_hs, deth = self._invert_hs(h)
self._norm_factor = deth * self.n
self._inv_hs = inv_hs
self._hs = h
@property
def inc(self):
return self._inc
@inc.setter
def inc(self, inc):
if inc is None:
_tau, tau = self.kernel.effective_support()
xyzrange = 8 * self.sigma
L1 = 10
inc = max(48, (L1 * xyzrange / (tau * self.hs)).max())
inc = 2 ** nextpow2(inc)
self._inc = inc
@property
def alpha(self):
return self._alpha
@alpha.setter
def alpha(self, alpha):
self._alpha = alpha
self._lambda = np.ones(self.n)
if alpha > 0:
f = self.eval_points(self.dataset) # pilot estimate
g = np.exp(np.mean(np.log(f)))
self._lambda = (f / g) ** (-alpha)
def initialize(self):
if self.n > 1:
self._initialize()
def _initialize(self):
pass
def get_args(self, xmin=None, xmax=None):
sxmin = self.xmin
if xmin is not None:
sxmin = np.minimum(xmin, sxmin)
sxmax = self.xmax
if xmax is not None:
sxmax = np.maximum(xmax, sxmax)
args = []
inc = self.inc
for i in range(self.d):
args.append(np.linspace(sxmin[i], sxmax[i], inc))
return args
def eval_grid_fast(self, *args, **kwds):
"""Evaluate the estimated pdf on a grid.
Parameters
----------
arg_0,arg_1,... arg_d-1 : vectors
Alternatively, if no vectors is passed in then
arg_i = linspace(self.xmin[i], self.xmax[i], self.inc)
output : string optional
'value' if value output
'data' if object output
Returns
-------
values : array-like
The values evaluated at meshgrid(*args).
"""
if len(args) == 0:
args = self.get_args()
self.args = args
return self.eval_grid_fun(self._eval_grid_fast, *args, **kwds)
def _eval_grid_fast(self, *args, **kwds):
pass
def eval_grid(self, *args, **kwds):
"""Evaluate the estimated pdf on a grid.
Parameters
----------
arg_0,arg_1,... arg_d-1 : vectors
Alternatively, if no vectors is passed in then
arg_i = linspace(self.xmin[i], self.xmax[i], self.inc)
output : string optional
'value' if value output
'data' if object output
Returns
-------
values : array-like
The values evaluated at meshgrid(*args).
"""
if len(args) == 0:
args = self.get_args()
self.args = args
return self.eval_grid_fun(self._eval_grid, *args, **kwds)
def _eval_grid(self, *args, **kwds):
pass
def _add_contour_levels(self, wdata):
p_levels = np.r_[10:90:20, 95, 99, 99.9]
try:
c_levels = qlevels(wdata.data, p=p_levels)
wdata.clevels = c_levels
wdata.plevels = p_levels
except Exception as e:
msg = "Could not calculate contour levels!. ({})".format(str(e))
warnings.warn(msg)
def _make_object(self, f, **kwds):
titlestr = 'Kernel density estimate ({})'.format(self.kernel.name)
kwds2 = dict(title=titlestr)
kwds2['plot_kwds'] = dict(plotflag=1)
kwds2.update(**kwds)
args = self.args
if self.d == 1:
args = args[0]
wdata = PlotData(f, args, **kwds2)
if self.d > 1:
self._add_contour_levels(wdata)
return wdata
def eval_grid_fun(self, eval_grd, *args, **kwds):
output = kwds.pop('output', 'value')
f = eval_grd(*args, **kwds)
if output == 'value':
return f
return self._make_object(f, **kwds)
def _check_shape(self, points):
points = atleast_2d(points)
d, m = points.shape
if d != self.d:
_assert(d == 1 and m == self.d, "points have dimension {}, "
"dataset has dimension {}".format(d, self.d))
# points was passed in as a row vector
points = np.reshape(points, (self.d, 1))
return points
def eval_points(self, points, **kwds):
"""Evaluate the estimated pdf on a set of points.
Parameters
----------
points : (# of dimensions, # of points)-array
Alternatively, a (# of dimensions,) vector can be passed in and
treated as a single point.
Returns
-------
values : (# of points,)-array
The values at each point.
Raises
------
ValueError if the dimensionality of the input points is different than
the dimensionality of the KDE.
"""
points = self._check_shape(points)
return self._eval_points(points, **kwds)
def _eval_points(self, points, **kwds):
pass
__call__ = eval_grid
class TKDE(_KDE):
""" Transformation Kernel-Density Estimator.
Parameters
----------
dataset : (# of dims, # of data)-array
datapoints to estimate from
hs : array-like (optional)
smooting parameter vector/matrix.
(default compute from data using kernel.get_smoothing function)
kernel : kernel function object.
kernel must have get_smoothing method
alpha : real scalar (optional)
sensitivity parameter (default 0 regular KDE)
A good choice might be alpha = 0.5 ( or 1/D)
alpha = 0 Regular KDE (hs is constant)
0 < alpha <= 1 Adaptive KDE (Make hs change)
xmin, xmax : vectors
specifying the default argument range for the kde.eval_grid methods.
For the kde.eval_grid_fast methods the values must cover the range of
the data. (default min(data)-range(data)/4, max(data)-range(data)/4)
If a single value of xmin or xmax is given then the boundary is the is
the same for all dimensions.
inc : scalar integer
defining the default dimension of the output from kde.eval_grid methods
(default 512)
(For kde.eval_grid_fast: A value below 50 is very fast to compute but
may give some inaccuracies. Values between 100 and 500 give very
accurate results)
L2 : array-like
vector of transformation parameters (default 1 no transformation)
t(xi;L2) = xi^L2*sign(L2) for L2(i) ~= 0
t(xi;L2) = log(xi) for L2(i) == 0
If single value of L2 is given then the transformation is the same in
all directions.
Members
-------
d : int
number of dimensions
n : int
number of datapoints
Methods
-------
kde.eval_grid_fast(x0, x1,..., xd) : array
evaluate the estimated pdf on meshgrid(x0, x1,..., xd)
kde.eval_grid(x0, x1,..., xd) : array
evaluate the estimated pdf on meshgrid(x0, x1,..., xd)
kde.eval_points(points) : array
evaluate the estimated pdf on a provided set of points
kde(x0, x1,..., xd) : array
same as kde.eval_grid(x0, x1,..., xd)
Example
-------
N = 20
data = np.random.rayleigh(1, size=(N,))
>>> data = np.array([
... 0.75355792, 0.72779194, 0.94149169, 0.07841119,2.32291887,
... 1.10419995, 0.77055114, 0.60288273, 1.36883635, 1.74754326,
... 1.09547561, 1.01671133, 0.73211143, 0.61891719, 0.75903487,
... 1.8919469 , 0.72433808, 1.92973094, 0.44749838, 1.36508452])
>>> import wafo.kdetools as wk
>>> x = np.linspace(0.01, max(data.ravel()) + 1, 10)
>>> kde = wk.TKDE(data, hs=0.5, L2=0.5)
>>> f = kde(x)
>>> f
array([ 1.03982714, 0.45839018, 0.39514782, 0.32860602, 0.26433318,
0.20717946, 0.15907684, 0.1201074 , 0.08941027, 0.06574882])
>>> kde.eval_grid(x)
array([ 1.03982714, 0.45839018, 0.39514782, 0.32860602, 0.26433318,
0.20717946, 0.15907684, 0.1201074 , 0.08941027, 0.06574882])
>>> kde.eval_grid_fast(x)
array([ 1.04018924, 0.45838973, 0.39514689, 0.32860532, 0.26433301,
0.20717976, 0.15907697, 0.1201077 , 0.08941129, 0.06574899])
import pylab as plb
h1 = plb.plot(x, f) # 1D probability density plot
t = np.trapz(f, x)
"""
def __init__(self, data, hs=None, kernel=None, alpha=0.0,
xmin=None, xmax=None, inc=512, L2=None):
self.L2 = L2
# self.dataset = data
# self.tkde =
super(TKDE, self).__init__(data, hs, kernel, alpha, xmin, xmax, inc)
# @property
# def dataset(self):
# return self._dataset
#
# @dataset.setter
# def dataset(self, data):
# self._dataset = atleast_2d(data)
# self._tdataset = self._dat2gaus(self._dataset)
def _initialize(self):
self._check_xmin()
tdataset = self._dat2gaus(self.dataset)
xmin = self.xmin
if xmin is not None:
xmin = self._dat2gaus(np.reshape(xmin, (-1, 1)))
xmax = self.xmax
if xmax is not None:
xmax = self._dat2gaus(np.reshape(xmax, (-1, 1)))
self.tkde = KDE(tdataset, self.hs, self.kernel, self.alpha,
np.ravel(xmin), np.ravel(xmax),
self.inc)
if self.inc is None:
self.inc = self.tkde.inc
def _check_xmin(self):
if self.L2 is not None:
amin = self.dataset.min(axis=-1)
# default no transformation
L2 = np.atleast_1d(self.L2) * np.ones(self.d)
self.xmin = np.where(L2 != 1,
np.maximum(self.xmin, amin / 100.0),
self.xmin)
def _dat2gaus(self, points):
if self.L2 is None:
return points # default no transformation
# default no transformation
L2 = np.atleast_1d(self.L2) * np.ones(self.d)
tpoints = copy.copy(points)
for i, v2 in enumerate(L2.tolist()):
tpoints[i] = np.log(points[i]) if v2 == 0 else points[i] ** v2
return tpoints
def _gaus2dat(self, tpoints):
if self.L2 is None:
return tpoints # default no transformation
# default no transformation
L2 = np.atleast_1d(self.L2) * np.ones(self.d)
points = copy.copy(tpoints)
for i, v2 in enumerate(L2.tolist()):
points[i] = np.exp(
tpoints[i]) if v2 == 0 else tpoints[i] ** (1.0 / v2)
return points
def _scale_pdf(self, pdf, points):
if self.L2 is None:
return pdf
# default no transformation
L2 = np.atleast_1d(self.L2) * np.ones(self.d)
for i, v2 in enumerate(L2.tolist()):
factor = v2 * np.sign(v2) if v2 else 1
pdf *= np.where(v2 == 1, 1, points[i] ** (v2 - 1) * factor)
if (np.abs(np.diff(pdf)).max() > 10).any():
msg = ''' Numerical problems may have occured due to the power
transformation. Check the KDE for spurious spikes'''
warnings.warn(msg)
return pdf
def eval_grid_fast2(self, *args, **kwds):
"""Evaluate the estimated pdf on a grid.
Parameters
----------
arg_0,arg_1,... arg_d-1 : vectors
Alternatively, if no vectors is passed in then
arg_i = gauss2dat(linspace(dat2gauss(self.xmin[i]),
dat2gauss(self.xmax[i]), self.inc))
output : string optional
'value' if value output
'data' if object output
Returns
-------
values : array-like
The values evaluated at meshgrid(*args).
"""
return self.eval_grid_fun(self._eval_grid_fast, *args, **kwds)
def _interpolate(self, points, f, *args, **kwds):
ipoints = meshgrid(*args) # if self.d > 1 else args
for i in range(self.d):
points[i].shape = -1,
points = np.asarray(points).T
fi = interpolate.griddata(points, np.ravel(f), tuple(ipoints),
method='linear', fill_value=0.0)
self.args = args
r = kwds.get('r', 0)
if r == 0:
return fi * (fi > 0)
return fi
def _get_targs(self, args):
targs = []
if len(args):
targs0 = self._dat2gaus(list(args))
xmin = [min(t) for t in targs0]
xmax = [max(t) for t in targs0]
targs = self.tkde.get_args(xmin, xmax)
return targs
def _eval_grid_fast(self, *args, **kwds):
if self.L2 is None:
f = self.tkde.eval_grid_fast(*args, **kwds)
self.args = self.tkde.args
return f
targs = self._get_targs(args)
tf = self.tkde.eval_grid_fast(*targs)
self.args = self._gaus2dat(list(self.tkde.args))
points = meshgrid(*self.args)
f = self._scale_pdf(tf, points)
if len(args):
return self._interpolate(points, f, *args, **kwds)
return f
def _eval_grid(self, *args, **kwds):
if self.L2 is None:
return self.tkde.eval_grid(*args, **kwds)
targs = self._dat2gaus(list(args))
tf = self.tkde.eval_grid(*targs, **kwds)
points = meshgrid(*args)
f = self._scale_pdf(tf, points)
return f
def _eval_points(self, points):
"""Evaluate the estimated pdf on a set of points.
Parameters
----------
points : (# of dimensions, # of points)-array
Alternatively, a (# of dimensions,) vector can be passed in and
treated as a single point.
Returns
-------
values : (# of points,)-array
The values at each point.
Raises
------
ValueError if the dimensionality of the input points is different than
the dimensionality of the KDE.
"""
if self.L2 is None:
return self.tkde.eval_points(points)
tpoints = self._dat2gaus(points)
tf = self.tkde.eval_points(tpoints)
f = self._scale_pdf(tf, points)
return f
class KDE(_KDE):
""" Kernel-Density Estimator.
Parameters
----------
data : (# of dims, # of data)-array
datapoints to estimate from
hs : array-like (optional)
smooting parameter vector/matrix.
(default compute from data using kernel.get_smoothing function)
kernel : kernel function object.
kernel must have get_smoothing method
alpha : real scalar (optional)
sensitivity parameter (default 0 regular KDE)
A good choice might be alpha = 0.5 ( or 1/D)
alpha = 0 Regular KDE (hs is constant)
0 < alpha <= 1 Adaptive KDE (Make hs change)
xmin, xmax : vectors
specifying the default argument range for the kde.eval_grid methods.
For the kde.eval_grid_fast methods the values must cover the range of
the data.
(default min(data)-range(data)/4, max(data)-range(data)/4)
If a single value of xmin or xmax is given then the boundary is the is
the same for all dimensions.
inc : scalar integer (default 512)
defining the default dimension of the output from kde.eval_grid methods
(For kde.eval_grid_fast: A value below 50 is very fast to compute but
may give some inaccuracies. Values between 100 and 500 give very
accurate results)
Members
-------
d : int
number of dimensions
n : int
number of datapoints
Methods
-------
kde.eval_grid_fast(x0, x1,..., xd) : array
evaluate the estimated pdf on meshgrid(x0, x1,..., xd)
kde.eval_grid(x0, x1,..., xd) : array
evaluate the estimated pdf on meshgrid(x0, x1,..., xd)
kde.eval_points(points) : array
evaluate the estimated pdf on a provided set of points
kde(x0, x1,..., xd) : array
same as kde.eval_grid(x0, x1,..., xd)
Example
-------
N = 20
data = np.random.rayleigh(1, size=(N,))
>>> data = np.array([
... 0.75355792, 0.72779194, 0.94149169, 0.07841119, 2.32291887,
... 1.10419995, 0.77055114, 0.60288273, 1.36883635, 1.74754326,
... 1.09547561, 1.01671133, 0.73211143, 0.61891719, 0.75903487,
... 1.8919469 , 0.72433808, 1.92973094, 0.44749838, 1.36508452])
>>> x = np.linspace(0, max(data.ravel()) + 1, 10)
>>> import wafo.kdetools as wk
>>> kde = wk.KDE(data, hs=0.5, alpha=0.5)
>>> f = kde(x)
>>> f
array([ 0.17252055, 0.41014271, 0.61349072, 0.57023834, 0.37198073,
0.21409279, 0.12738463, 0.07460326, 0.03956191, 0.01887164])
>>> kde.eval_grid(x)
array([ 0.17252055, 0.41014271, 0.61349072, 0.57023834, 0.37198073,
0.21409279, 0.12738463, 0.07460326, 0.03956191, 0.01887164])
>>> kde.eval_grid_fast(x)
array([ 0.21720891, 0.43308789, 0.59017626, 0.55847998, 0.39681482,
0.23987473, 0.13113066, 0.06062029, 0.02160104, 0.00559028])
>>> kde0 = wk.KDE(data, hs=0.5, alpha=0.0)
>>> kde0.eval_points(x)
array([ 0.2039735 , 0.40252503, 0.54595078, 0.52219649, 0.3906213 ,
0.26381501, 0.16407362, 0.08270612, 0.02991145, 0.00720821])
>>> kde0.eval_grid(x)
array([ 0.2039735 , 0.40252503, 0.54595078, 0.52219649, 0.3906213 ,
0.26381501, 0.16407362, 0.08270612, 0.02991145, 0.00720821])
>>> f = kde0.eval_grid(x, output='plotobj')
>>> f.data
array([ 0.2039735 , 0.40252503, 0.54595078, 0.52219649, 0.3906213 ,
0.26381501, 0.16407362, 0.08270612, 0.02991145, 0.00720821])
>>> f = kde0.eval_grid_fast()
>>> np.allclose(np.interp(x, kde0.args[0], f),
... [ 0.20398034, 0.40252166, 0.54593292, 0.52218993, 0.39062245,
... 0.26381651, 0.16407487, 0.08270847, 0.02991439, 0.00882095])
True
>>> f1 = kde0.eval_grid_fast(output='plot')
>>> np.allclose(np.interp(x, f1.args, f1.data),
... [ 0.20398034, 0.40252166, 0.54593292, 0.52218993, 0.39062245,
... 0.26381651, 0.16407487, 0.08270847, 0.02991439, 0.00882095])
True
h = f1.plot()
import pylab as plb
h1 = plb.plot(x, f) # 1D probability density plot
t = np.trapz(f, x)
"""
@staticmethod
def _make_flat_grid(dx, d, inc):
Xn = []
x0 = np.linspace(-inc, inc, 2 * inc + 1)
for i in range(d):
Xn.append(x0[:-1] * dx[i])
Xnc = meshgrid(*Xn)
for i in range(d):
Xnc[i].shape = (-1,)
return np.vstack(Xnc)
def _kernel_weights(self, Xn, dx, d, inc):
kw = self.kernel(Xn)
norm_fact0 = (kw.sum() * dx.prod() * self.n)
norm_fact = (self._norm_factor * self.kernel.norm_factor(d, self.n))
if np.abs(norm_fact0 - norm_fact) > 0.05 * norm_fact:
warnings.warn(
'Numerical inaccuracy due to too low discretization. ' +
'Increase the discretization of the evaluation grid ' +
'(inc={})!'.format(inc))
norm_fact = norm_fact0
kw = kw / norm_fact
return kw
def _eval_grid_fast(self, *args, **kwds):
X = np.vstack(args)
d, inc = X.shape
dx = X[:, 1] - X[:, 0]
Xnc = self._make_flat_grid(dx, d, inc)
Xn = np.dot(self._inv_hs, Xnc)
kw = self._kernel_weights(Xn, dx, d, inc)
r = kwds.get('r', 0)
if r != 0:
fun = self._moment_fun(r)
kw *= fun(np.vstack(Xnc))
kw.shape = (2 * inc, ) * d
kw = np.fft.ifftshift(kw)
y = kwds.get('y', 1.0)
if self.alpha > 0:
warnings.warn('alpha parameter is not used for binned!')
# Find the binned kernel weights, c.
c = gridcount(self.dataset, X, y=y)
# Perform the convolution.
z = np.real(ifftn(fftn(c, s=kw.shape) * fftn(kw)))
ix = (slice(0, inc),) * d
if r == 0:
return z[ix] * (z[ix] > 0.0)
return z[ix]
def _eval_grid(self, *args, **kwds):
grd = meshgrid(*args)
shape0 = grd[0].shape
d = len(grd)
for i in range(d):
grd[i] = grd[i].ravel()
f = self.eval_points(np.vstack(grd), **kwds)
return f.reshape(shape0)
def _moment_fun(self, r):
if r == 0:
return lambda x: 1
return lambda x: (x ** r).sum(axis=0)
@property
def norm_factor(self):
return self._norm_factor * self.kernel.norm_factor(self.d, self.n)
def _loop_over_data(self, data, points, y, r):
fun = self._moment_fun(r)
d, m = points.shape
inv_hs, lambda_ = self._inv_hs, self._lambda
kernel = self.kernel
y_d_lambda = y / lambda_ ** d
result = np.zeros((m,))
for i in range(self.n):
dxi = points - data[:, i, np.newaxis]
tdiff = np.dot(inv_hs / lambda_[i], dxi)
result += fun(dxi) * kernel(tdiff) * y_d_lambda[i]
return result / self.norm_factor
def _loop_over_points(self, data, points, y, r):
fun = self._moment_fun(r)
d, m = points.shape
inv_hs, lambda_ = self._inv_hs, self._lambda
kernel = self.kernel
y_d_lambda = y / lambda_ ** d
result = np.zeros((m,))
for i in range(m):
dxi = points[:, i, np.newaxis] - data
tdiff = np.dot(inv_hs, dxi / lambda_[np.newaxis, :])
result[i] = np.sum(fun(dxi) * kernel(tdiff) * y_d_lambda, axis=-1)
return result / self.norm_factor
def _eval_points(self, points, **kwds):
"""Evaluate the estimated pdf on a set of points.
Parameters
----------
points : (# of dimensions, # of points)-array
Alternatively, a (# of dimensions,) vector can be passed in and
treated as a single point.
Returns
-------
values : (# of points,)-array
The values at each point.
Raises
------
ValueError if the dimensionality of the input points is different than
the dimensionality of the KDE.
"""
d, m = points.shape
_assert(d == self.d, "d={} expected, got {}".format(self.d, d))
y = kwds.get('y', 1)
r = kwds.get('r', 0)
more_points_than_data = m >= self.n
if more_points_than_data:
return self._loop_over_data(self.dataset, points, y, r)
return self._loop_over_points(self.dataset, points, y, r)
class KRegression(object): # _KDE):
""" Kernel-Regression
Parameters
----------
data : (# of dims, # of data)-array
datapoints to estimate from
y : # of data - array
response variable
p : scalar integer (0 or 1)
Nadaraya-Watson estimator if p=0,
local linear estimator if p=1.
hs : array-like (optional)
smooting parameter vector/matrix.
(default compute from data using kernel.get_smoothing function)
kernel : kernel function object.
kernel must have get_smoothing method
alpha : real scalar (optional)
sensitivity parameter (default 0 regular KDE)
A good choice might be alpha = 0.5 ( or 1/D)
alpha = 0 Regular KDE (hs is constant)
0 < alpha <= 1 Adaptive KDE (Make hs change)
xmin, xmax : vectors
specifying the default argument range for the kde.eval_grid methods.
For the kde.eval_grid_fast methods the values must cover the range of
the data. (default min(data)-range(data)/4, max(data)-range(data)/4)
If a single value of xmin or xmax is given then the boundary is the is
the same for all dimensions.
inc : scalar integer (default 128)
defining the default dimension of the output from kde.eval_grid methods
(For kde.eval_grid_fast: A value below 50 is very fast to compute but
may give some inaccuracies. Values between 100 and 500 give very
accurate results)
Members
-------
d : int
number of dimensions
n : int
number of datapoints
Methods
-------
kde.eval_grid_fast(x0, x1,..., xd) : array
evaluate the estimated pdf on meshgrid(x0, x1,..., xd)
kde.eval_grid(x0, x1,..., xd) : array
evaluate the estimated pdf on meshgrid(x0, x1,..., xd)
kde.eval_points(points) : array
evaluate the estimated pdf on a provided set of points
kde(x0, x1,..., xd) : array
same as kde.eval_grid(x0, x1,..., xd)
Example
-------
>>> import wafo.kdetools as wk
>>> N = 100
>>> x = np.linspace(0, 1, N)
>>> ei = np.random.normal(loc=0, scale=0.075, size=(N,))
>>> ei = np.sqrt(0.075) * np.sin(100*x)
>>> y = 2*np.exp(-x**2/(2*0.3**2))+3*np.exp(-(x-1)**2/(2*0.7**2)) + ei
>>> kreg = wk.KRegression(x, y)
>>> f = kreg(output='plotobj', title='Kernel regression', plotflag=1)
>>> np.allclose(f.data[:5],
... [ 3.18670593, 3.18678088, 3.18682196, 3.18682932, 3.18680337])
True
h = f.plot(label='p=0')
"""
def __init__(self, data, y, p=0, hs=None, kernel=None, alpha=0.0,
xmin=None, xmax=None, inc=128, L2=None):
self.tkde = TKDE(data, hs=hs, kernel=kernel,
alpha=alpha, xmin=xmin, xmax=xmax, inc=inc, L2=L2)
self.y = np.atleast_1d(y)
self.p = p
def eval_grid_fast(self, *args, **kwds):
self._grdfun = self.tkde.eval_grid_fast
return self.tkde.eval_grid_fun(self._eval_gridfun, *args, **kwds)
def eval_grid(self, *args, **kwds):
self._grdfun = self.tkde.eval_grid
return self.tkde.eval_grid_fun(self._eval_gridfun, *args, **kwds)
def _eval_gridfun(self, *args, **kwds):
grdfun = self._grdfun
s0 = grdfun(*args, r=0)
t0 = grdfun(*args, r=0, y=self.y)
if self.p == 0:
return (t0 / (s0 + _TINY)).clip(min=-_REALMAX, max=_REALMAX)
elif self.p == 1:
s1 = grdfun(*args, r=1)
s2 = grdfun(*args, r=2)
t1 = grdfun(*args, r=1, y=self.y)
return ((s2 * t0 - s1 * t1) /
(s2 * s0 - s1 ** 2)).clip(min=-_REALMAX, max=_REALMAX)
__call__ = eval_grid_fast
class BKRegression(object):
'''
Kernel-Regression on binomial data
method : {'beta', 'wilson'}
method is one of the following
'beta', return Bayesian Credible interval using beta-distribution.
'wilson', return Wilson score interval
a, b : scalars
parameters of the beta distribution defining the apriori distribution
of p, i.e., the Bayes estimator for p: p = (y+a)/(n+a+b).
Setting a=b=0.5 gives Jeffreys interval.
'''
def __init__(self, *args, **kwds):
self.method = kwds.pop('method', 'beta')
self.a = max(kwds.pop('a', 0.5), _TINY)
self.b = max(kwds.pop('b', 0.5), _TINY)
self.kreg = KRegression(*args, **kwds)
# defines bin width (i.e. smoothing) in empirical estimate
self.hs_e = None
# self.x = self.kreg.tkde.dataset
# self.y = self.kreg.y
def _set_smoothing(self, hs):
self.kreg.tkde.hs = hs
self.kreg.tkde.initialize()
x = property(fget=lambda cls: cls.kreg.tkde.dataset.squeeze())
y = property(fget=lambda cls: cls.kreg.y)
kernel = property(fget=lambda cls: cls.kreg.tkde.kernel)
hs = property(fset=_set_smoothing, fget=lambda cls: cls.kreg.tkde.hs)
def _get_max_smoothing(self, fun=None):
"""Return maximum value for smoothing parameter."""
x = self.x
y = self.y
if fun is None:
get_smoothing = self.kernel.get_smoothing
else:
get_smoothing = getattr(self.kernel, fun)
hs1 = get_smoothing(x)
# hx = np.median(np.abs(x-np.median(x)))/0.6745*(4.0/(3*n))**0.2
if (y == 1).any():
hs2 = get_smoothing(x[y == 1])
# hy = np.median(np.abs(y-np.mean(y)))/0.6745*(4.0/(3*n))**0.2
else:
hs2 = 4 * hs1
# hy = 4*hx
hopt = sqrt(hs1 * hs2)
return hopt, hs1, hs2
def get_grid(self, hs_e=None):
if hs_e is None:
if self.hs_e is None:
hs1 = self._get_max_smoothing('hste')[0]
hs2 = self._get_max_smoothing('hos')[0]
self.hs_e = sqrt(hs1 * hs2)
hs_e = self.hs_e
x = self.x
xmin, xmax = x.min(), x.max()
ni = max(2 * int((xmax - xmin) / hs_e) + 3, 5)
sml = hs_e # *0.1
xi = np.linspace(xmin - sml, xmax + sml, ni)
return xi
def _wilson_score(self, n, p, alpha):
# Wilson score
z0 = -_invnorm(alpha / 2)
den = 1 + (z0 ** 2. / n)
xc = (p + (z0 ** 2) / (2 * n)) / den
halfwidth = (z0 * sqrt((p * (1 - p) / n) +
(z0 ** 2 / (4 * (n ** 2))))) / den
plo = xc - halfwidth.clip(min=0) # wilson score
pup = xc + halfwidth.clip(max=1.0) # wilson score
return plo, pup
def _credible_interval(self, n, p, alpha):
# Jeffreys intervall a=b=0.5
# st.beta.isf(alpha/2, y+a, n-y+b) y = n*p, n-y = n*(1-p)
a = self.a
b = self.b
st = scipy.stats
pup = np.where(p == 1, 1,
st.beta.isf(alpha / 2, n * p + a, n * (1 - p) + b))
plo = np.where(p == 0, 0,
st.beta.isf(1 - alpha / 2, n * p + a, n * (1 - p) + b))
return plo, pup
def prb_ci(self, n, p, alpha=0.05):
"""Return Confidence Interval for the binomial probability p.
Parameters
----------
n : array-like
number of Bernoulli trials
p : array-like
estimated probability of success in each trial
alpha : scalar
confidence level
method : {'beta', 'wilson'}
method is one of the following
'beta', return Bayesian Credible interval using beta-distribution.
'wilson', return Wilson score interval
a, b : scalars
parameters of the beta distribution defining the apriori
distribution of p, i.e.,
the Bayes estimator for p: p = (y+a)/(n+a+b).
Setting a=b=0.5 gives Jeffreys interval.
"""
if self.method.startswith('w'):
plo, pup = self._wilson_score(n, p, alpha)
else:
plo, pup = self._credible_interval(n, p, alpha)
return plo, pup
def prb_empirical(self, xi=None, hs_e=None, alpha=0.05, color='r', **kwds):
"""Returns empirical binomial probabiltity.
Parameters
----------
x : ndarray
position vector
y : ndarray
binomial response variable (zeros and ones)
alpha : scalar
confidence level
color:
used in plot
Returns
-------
P(x) : PlotData object
empirical probability
"""
if xi is None:
xi = self.get_grid(hs_e)
x = self.x
y = self.y
c = gridcount(x, xi) # + self.a + self.b # count data
if np.any(y == 1):
c0 = gridcount(x[y == 1], xi) # + self.a # count success
else:
c0 = np.zeros(np.shape(xi))
prb = np.where(c == 0, 0, c0 / (c + _TINY)) # assume prb==0 for c==0
CI = np.vstack(self.prb_ci(c, prb, alpha))
prb_e = PlotData(prb, xi, plotmethod='plot', plot_args=['.'],
plot_kwds=dict(markersize=6, color=color, picker=5))
prb_e.dataCI = CI.T
prb_e.count = c
return prb_e
def prb_smoothed(self, prb_e, hs, alpha=0.05, color='r', label=''):
"""Return smoothed binomial probability.
Parameters
----------
prb_e : PlotData object with empirical binomial probabilites
hs : smoothing parameter
alpha : confidence level
color : color of plot object
label : label for plot object
"""
x_e = prb_e.args
n_e = len(x_e)
dx_e = x_e[1] - x_e[0]
n = self.x.size
x_s = np.linspace(x_e[0], x_e[-1], 10 * n_e + 1)
self.hs = hs
prb_s = self.kreg(x_s, output='plotobj', title='', plot_kwds=dict(
color=color, linewidth=2)) # dict(plotflag=7))
m_nan = np.isnan(prb_s.data)
if m_nan.any(): # assume 0/0 division
prb_s.data[m_nan] = 0.0
# prb_s.data[np.isnan(prb_s.data)] = 0
# expected number of data in each bin
c_s = self.kreg.tkde.eval_grid_fast(x_s) * dx_e * n
plo, pup = self.prb_ci(c_s, prb_s.data, alpha)
prb_s.dataCI = np.vstack((plo, pup)).T
prb_s.prediction_error_avg = np.trapz(
pup - plo, x_s) / (x_s[-1] - x_s[0])
if label:
prb_s.plot_kwds['label'] = label
prb_s.children = [PlotData([plo, pup], x_s,
plotmethod='fill_between',
plot_kwds=dict(alpha=0.2, color=color)),
prb_e]
p_e = prb_e.eval_points(x_s)
p_s = prb_s.data
dp_s = np.sign(np.diff(p_s))
k = (dp_s[:-1] != dp_s[1:]).sum() # numpeaks
sigmai = _logit(pup) - _logit(plo) + _EPS
aicc = ((((_logit(p_e) - _logit(p_s)) / sigmai) ** 2).sum() +
2 * k * (k + 1) / np.maximum(n_e - k + 1, 1) +
np.abs((p_e - pup).clip(min=0) -
(p_e - plo).clip(max=0)).sum())
prb_s.aicc = aicc
return prb_s
def prb_search_best(self, prb_e=None, hsvec=None, hsfun='hste',
alpha=0.05, color='r', label=''):
"""Return best smoothed binomial probability.
Parameters
----------
prb_e : PlotData object with empirical binomial probabilites
hsvec : arraylike (default np.linspace(hsmax*0.1,hsmax,55))
vector smoothing parameters
hsfun :
method for calculating hsmax
"""
if prb_e is None:
prb_e = self.prb_empirical(
hs_e=self.hs_e, alpha=alpha, color=color)
if hsvec is None:
hsmax = self._get_max_smoothing(hsfun)[0]
hsmax = max(hsmax, self.hs_e)
hsvec = np.linspace(hsmax * 0.2, hsmax, 55)
hs_best = hsvec[-1] + 0.1
prb_best = self.prb_smoothed(prb_e, hs_best, alpha, color, label)
aicc = np.zeros(np.size(hsvec))
for i, hi in enumerate(hsvec):
f = self.prb_smoothed(prb_e, hi, alpha, color, label)
aicc[i] = f.aicc
if f.aicc <= prb_best.aicc:
prb_best = f
hs_best = hi
prb_best.score = PlotData(aicc, hsvec)
prb_best.hs = hs_best
self._set_smoothing(hs_best)
return prb_best
def kde_demo1():
"""KDEDEMO1 Demonstrate the smoothing parameter impact on KDE.
KDEDEMO1 shows the true density (dotted) compared to KDE based on 7
observations (solid) and their individual kernels (dashed) for 3
different values of the smoothing parameter, hs.
"""
st = scipy.stats
x = np.linspace(-4, 4, 101)
x0 = x / 2.0
data = np.random.normal(loc=0, scale=1.0, size=7)
kernel = Kernel('gauss')
hs = kernel.hns(data)
hVec = [hs / 2, hs, 2 * hs]
for ix, h in enumerate(hVec):
plt.figure(ix)
kde = KDE(data, hs=h, kernel=kernel)
f2 = kde(x, output='plot', title='h_s = {0:2.2f}'.format(float(h)),
ylab='Density')
f2.plot('k-')
plt.plot(x, st.norm.pdf(x, 0, 1), 'k:')
n = len(data)
plt.plot(data, np.zeros(data.shape), 'bx')
y = kernel(x0) / (n * h * kernel.norm_factor(d=1, n=n))
for i in range(n):
plt.plot(data[i] + x0 * h, y, 'b--')
plt.plot([data[i], data[i]], [0, np.max(y)], 'b')
plt.axis([min(x), max(x), 0, 0.5])
def kde_demo2():
'''Demonstrate the difference between transformation- and ordinary-KDE.
KDEDEMO2 shows that the transformation KDE is a better estimate for
Rayleigh distributed data around 0 than the ordinary KDE.
'''
st = scipy.stats
data = st.rayleigh.rvs(scale=1, size=300)
x = np.linspace(1.5e-2, 5, 55)
kde = KDE(data)
f = kde(output='plot', title='Ordinary KDE (hs={0:})'.format(kde.hs))
plt.figure(0)
f.plot()
plt.plot(x, st.rayleigh.pdf(x, scale=1), ':')
# plotnorm((data).^(L2)) # gives a straight line => L2 = 0.5 reasonable
hs = Kernel('gauss').get_smoothing(data**0.5)
tkde = TKDE(data, hs=hs, L2=0.5)
ft = tkde(x, output='plot',
title='Transformation KDE (hs={0:})'.format(tkde.tkde.hs))
plt.figure(1)
ft.plot()
plt.plot(x, st.rayleigh.pdf(x, scale=1), ':')
plt.figure(0)
def kde_demo3():
'''Demonstrate the difference between transformation and ordinary-KDE in 2D
KDEDEMO3 shows that the transformation KDE is a better estimate for
Rayleigh distributed data around 0 than the ordinary KDE.
'''
st = scipy.stats
data = st.rayleigh.rvs(scale=1, size=(2, 300))
# x = np.linspace(1.5e-3, 5, 55)
kde = KDE(data)
f = kde(output='plot', title='Ordinary KDE', plotflag=1)
plt.figure(0)
f.plot()
plt.plot(data[0], data[1], '.')
# plotnorm((data).^(L2)) % gives a straight line => L2 = 0.5 reasonable
hs = Kernel('gauss').get_smoothing(data**0.5)
tkde = TKDE(data, hs=hs, L2=0.5)
ft = tkde.eval_grid_fast(
output='plot', title='Transformation KDE', plotflag=1)
plt.figure(1)
ft.plot()
plt.plot(data[0], data[1], '.')
plt.figure(0)
def kde_demo4(N=50):
'''Demonstrate that the improved Sheather-Jones plug-in (hisj) is superior
for 1D multimodal distributions
KDEDEMO4 shows that the improved Sheather-Jones plug-in smoothing is a
better compared to normal reference rules (in this case the hns)
'''
st = scipy.stats
data = np.hstack((st.norm.rvs(loc=5, scale=1, size=(N,)),
st.norm.rvs(loc=-5, scale=1, size=(N,))))
# x = np.linspace(1.5e-3, 5, 55)
kde = KDE(data, kernel=Kernel('gauss', 'hns'))
f = kde(output='plot', title='Ordinary KDE', plotflag=1)
kde1 = KDE(data, kernel=Kernel('gauss', 'hisj'))
f1 = kde1(output='plot', label='Ordinary KDE', plotflag=1)
plt.figure(0)
f.plot('r', label='hns={0}'.format(kde.hs))
# plt.figure(2)
f1.plot('b', label='hisj={0}'.format(kde1.hs))
x = np.linspace(-9, 9)
plt.plot(x, (st.norm.pdf(x, loc=-5, scale=1) +
st.norm.pdf(x, loc=5, scale=1)) / 2, 'k:',
label='True density')
plt.legend()
def kde_demo5(N=500):
'''Demonstrate that the improved Sheather-Jones plug-in (hisj) is superior
for 2D multimodal distributions
KDEDEMO5 shows that the improved Sheather-Jones plug-in smoothing is better
compared to normal reference rules (in this case the hns)
'''
st = scipy.stats
data = np.hstack((st.norm.rvs(loc=5, scale=1, size=(2, N,)),
st.norm.rvs(loc=-5, scale=1, size=(2, N,))))
kde = KDE(data, kernel=Kernel('gauss', 'hns'))
f = kde(output='plot', plotflag=1,
title='Ordinary KDE, hns={0:s}'.format(str(list(kde.hs))))
kde1 = KDE(data, kernel=Kernel('gauss', 'hisj'))
f1 = kde1(output='plot', plotflag=1,
title='Ordinary KDE, hisj={0:s}'.format(str(list(kde1.hs))))
plt.figure(0)
plt.clf()
f.plot()
plt.plot(data[0], data[1], '.')
plt.figure(1)
plt.clf()
f1.plot()
plt.plot(data[0], data[1], '.')
def kreg_demo1(hs=None, fast=False, fun='hisj'):
""""""
N = 100
# ei = np.random.normal(loc=0, scale=0.075, size=(N,))
ei = np.array([
-0.08508516, 0.10462496, 0.07694448, -0.03080661, 0.05777525,
0.06096313, -0.16572389, 0.01838912, -0.06251845, -0.09186784,
-0.04304887, -0.13365788, -0.0185279, -0.07289167, 0.02319097,
0.06887854, -0.08938374, -0.15181813, 0.03307712, 0.08523183,
-0.0378058, -0.06312874, 0.01485772, 0.06307944, -0.0632959,
0.18963205, 0.0369126, -0.01485447, 0.04037722, 0.0085057,
-0.06912903, 0.02073998, 0.1174351, 0.17599277, -0.06842139,
0.12587608, 0.07698113, -0.0032394, -0.12045792, -0.03132877,
0.05047314, 0.02013453, 0.04080741, 0.00158392, 0.10237899,
-0.09069682, 0.09242174, -0.15445323, 0.09190278, 0.07138498,
0.03002497, 0.02495252, 0.01286942, 0.06449978, 0.03031802,
0.11754861, -0.02322272, 0.00455867, -0.02132251, 0.09119446,
-0.03210086, -0.06509545, 0.07306443, 0.04330647, 0.078111,
-0.04146907, 0.05705476, 0.02492201, -0.03200572, -0.02859788,
-0.05893749, 0.00089538, 0.0432551, 0.04001474, 0.04888828,
-0.17708392, 0.16478644, 0.1171006, 0.11664846, 0.01410477,
-0.12458953, -0.11692081, 0.0413047, -0.09292439, -0.07042327,
0.14119701, -0.05114335, 0.04994696, -0.09520663, 0.04829406,
-0.01603065, -0.1933216, 0.19352763, 0.11819496, 0.04567619,
-0.08348306, 0.00812816, -0.00908206, 0.14528945, 0.02901065])
x = np.linspace(0, 1, N)
y0 = 2 * np.exp(-x ** 2 / (2 * 0.3 ** 2)) + \
3 * np.exp(-(x - 1) ** 2 / (2 * 0.7 ** 2))
y = y0 + ei
kernel = Kernel('gauss', fun=fun)
hopt = kernel.hisj(x)
kreg = KRegression(
x, y, p=0, hs=hs, kernel=kernel, xmin=-2 * hopt, xmax=1 + 2 * hopt)
if fast:
kreg.__call__ = kreg.eval_grid_fast
f = kreg(output='plot', title='Kernel regression', plotflag=1)
plt.figure(0)
f.plot(label='p=0')
kreg.p = 1
f1 = kreg(output='plot', title='Kernel regression', plotflag=1)
f1.plot(label='p=1')
# print(f1.data)
plt.plot(x, y, '.', label='data')
plt.plot(x, y0, 'k', label='True model')
plt.legend()
plt.show()
print(kreg.tkde.tkde._inv_hs)
print(kreg.tkde.tkde.hs)
_TINY = np.finfo(float).machar.tiny
_REALMIN = np.finfo(float).machar.xmin
_REALMAX = np.finfo(float).machar.xmax
_EPS = np.finfo(float).eps
def _logit(p):
pc = p.clip(min=0, max=1)
return (np.log(pc) - np.log1p(-pc)).clip(min=-40, max=40)
def _logitinv(x):
return 1.0 / (np.exp(-x) + 1)
def _get_data(n=100, symmetric=False, loc1=1.1, scale1=0.6, scale2=1.0):
st = scipy.stats
dist = st.norm
norm1 = scale2 * (dist.pdf(-loc1, loc=-loc1, scale=scale1) +
dist.pdf(-loc1, loc=loc1, scale=scale1))
def fun1(x):
return ((dist.pdf(x, loc=-loc1, scale=scale1) +
dist.pdf(x, loc=loc1, scale=scale1)) / norm1).clip(max=1.0)
x = np.sort(6 * np.random.rand(n, 1) - 3, axis=0)
y = (fun1(x) > np.random.rand(n, 1)).ravel()
# y = (np.cos(x)>2*np.random.rand(n, 1)-1).ravel()
x = x.ravel()
if symmetric:
xi = np.hstack((x.ravel(), -x.ravel()))
yi = np.hstack((y, y))
i = np.argsort(xi)
x = xi[i]
y = yi[i]
return x, y, fun1
def kreg_demo2(n=100, hs=None, symmetric=False, fun='hisj', plotlog=False):
x, y, fun1 = _get_data(n, symmetric)
kreg_demo3(x, y, fun1, hs=None, fun='hisj', plotlog=False)
def kreg_demo3(x, y, fun1, hs=None, fun='hisj', plotlog=False):
st = scipy.stats
alpha = 0.1
z0 = -_invnorm(alpha / 2)
n = x.size
hopt, hs1, hs2 = _get_regression_smooting(x, y, fun='hos')
if hs is None:
hs = hopt
forward = _logit
reverse = _logitinv
# forward = np.log
# reverse = np.exp
xmin, xmax = x.min(), x.max()
ni = max(2 * int((xmax - xmin) / hopt) + 3, 5)
print(ni)
print(xmin, xmax)
sml = hopt * 0.1
xi = np.linspace(xmin - sml, xmax + sml, ni)
xiii = np.linspace(xmin - sml, xmax + sml, 4 * ni + 1)
c = gridcount(x, xi)
if (y == 1).any():
c0 = gridcount(x[y == 1], xi)
else:
c0 = np.zeros(np.shape(xi))
yi = np.where(c == 0, 0, c0 / c)
kreg = KRegression(x, y, hs=hs, p=0)
fiii = kreg(xiii)
yiii = interpolate.interp1d(xi, yi)(xiii)
fit = fun1(xiii).clip(max=1.0)
df = np.diff(fiii)
eerr = np.abs((yiii - fiii)).std() + 0.5 * (df[:-1] * df[1:] < 0).sum() / n
err = (fiii - fit).std()
msg = '{0} err={1:1.3f},eerr={2:1.3f}, n={3:d}, hs={4:}, hs1={5:}, '\
'hs2={6:}'
title = (msg.format(fun, err, eerr, n, hs, hs1, hs2))
f = kreg(xiii, output='plotobj', title=title, plotflag=1)
# yi[yi==0] = 1.0/(c[c!=0].min()+4)
# yi[yi==1] = 1-1.0/(c[c!=0].min()+4)
# yi[yi==0] = fi[yi==0]
# yi[yi==0] = np.exp(stineman_interp(xi[yi==0], xi[yi>0],np.log(yi[yi>0])))
# yi[yi==0] = fun1(xi[yi==0])
try:
yi[yi == 0] = yi[yi > 0].min() / sqrt(n)
except:
yi[yi == 0] = 1. / n
yi[yi == 1] = 1 - (1 - yi[yi < 1].max()) / sqrt(n)
logity = forward(yi)
gkreg = KRegression(xi, logity, hs=hs, xmin=xmin - hopt, xmax=xmax + hopt)
fg = gkreg.eval_grid(
xi, output='plotobj', title='Kernel regression', plotflag=1)
sa = (fg.data - logity).std()
sa2 = iqrange(fg.data - logity) / 1.349
# print('sa=%g %g' % (sa, sa2))
sa = min(sa, sa2)
# plt.figure(1)
# plt.plot(xi, slogity-logity,'r.')
# plt.plot(xi, logity-,'b.')
# plt.plot(xi, fg.data-logity, 'b.')
# plt.show()
# return
fg = gkreg.eval_grid(
xiii, output='plotobj', title='Kernel regression', plotflag=1)
pi = reverse(fg.data)
dx = xi[1] - xi[0]
ckreg = KDE(x, hs=hs)
# ci = ckreg.eval_grid_fast(xi)*n*dx
ciii = ckreg.eval_grid_fast(xiii) * dx * x.size # n*(1+symmetric)
# sa1 = np.sqrt(1./(ciii*pi*(1-pi)))
# plo3 = reverse(fg.data-z0*sa)
# pup3 = reverse(fg.data+z0*sa)
fg.data = pi
pi = f.data
# ref Casella and Berger (1990) "Statistical inference" pp444
# a = 2*pi + z0**2/(ciii+1e-16)
# b = 2*(1+z0**2/(ciii+1e-16))
# plo2 = ((a-sqrt(a**2-2*pi**2*b))/b).clip(min=0,max=1)
# pup2 = ((a+sqrt(a**2-2*pi**2*b))/b).clip(min=0,max=1)
# Jeffreys intervall a=b=0.5
# st.beta.isf(alpha/2, x+a, n-x+b)
ab = 0.07 # 0.055
pi1 = pi # fun1(xiii)
pup2 = np.where(pi == 1,
1,
st.beta.isf(alpha / 2,
ciii * pi1 + ab,
ciii * (1 - pi1) + ab))
plo2 = np.where(pi == 0,
0,
st.beta.isf(1 - alpha / 2,
ciii * pi1 + ab,
ciii * (1 - pi1) + ab))
averr = np.trapz(pup2 - plo2, xiii) / \
(xiii[-1] - xiii[0]) + 0.5 * (df[:-1] * df[1:] < 0).sum()
# f2 = kreg_demo4(x, y, hs, hopt)
# Wilson score
den = 1 + (z0 ** 2. / ciii)
xc = (pi1 + (z0 ** 2) / (2 * ciii)) / den
halfwidth = (z0 * sqrt((pi1 * (1 - pi1) / ciii) +
(z0 ** 2 / (4 * (ciii ** 2))))) / den
plo = (xc - halfwidth).clip(min=0) # wilson score
pup = (xc + halfwidth).clip(max=1.0) # wilson score
# pup = (pi + z0*np.sqrt(pi*(1-pi)/ciii)).clip(min=0,max=1) # dont use
# plo = (pi - z0*np.sqrt(pi*(1-pi)/ciii)).clip(min=0,max=1)
# mi = kreg.eval_grid(x)
# sigma = (stineman_interp(x, xiii, pup)-stineman_interp(x, xiii, plo))/4
# aic = np.abs((y-mi)/sigma).std()+ 0.5*(df[:-1]*df[1:]<0).sum()/n
# aic = np.abs((yiii-fiii)/(pup-plo)).std() + \
# 0.5*(df[:-1]*df[1:]<0).sum() + \
# ((yiii-pup).clip(min=0)-(yiii-plo).clip(max=0)).sum()
k = (df[:-1] * df[1:] < 0).sum() # numpeaks
sigmai = (pup - plo)
aic = (((yiii - fiii) / sigmai) ** 2).sum() + \
2 * k * (k + 1) / np.maximum(ni - k + 1, 1) + \
np.abs((yiii - pup).clip(min=0) - (yiii - plo).clip(max=0)).sum()
# aic = (((yiii-fiii)/sigmai)**2).sum()+ 2*k*(k+1)/(ni-k+1) + \
# np.abs((yiii-pup).clip(min=0)-(yiii-plo).clip(max=0)).sum()
# aic = averr + ((yiii-pup).clip(min=0)-(yiii-plo).clip(max=0)).sum()
fg.plot(label='KReg grid aic={:2.3f}'.format(aic))
f.plot(label='KReg averr={:2.3f} '.format(averr))
labtxt = '%d CI' % (int(100 * (1 - alpha)))
plt.fill_between(xiii, pup, plo, alpha=0.20,
color='r', linestyle='--', label=labtxt)
plt.fill_between(xiii, pup2, plo2, alpha=0.20, color='b', linestyle=':',
label='{:d} CI2'.format(int(100 * (1 - alpha))))
plt.plot(xiii, fun1(xiii), 'r', label='True model')
plt.scatter(xi, yi, label='data')
print('maxp = {}'.format(np.nanmax(f.data)))
print('hs = {}'.format(kreg.tkde.tkde.hs))
plt.legend()
h = plt.gca()
if plotlog:
plt.setp(h, yscale='log')
# plt.show()
return hs1, hs2
def kreg_demo4(x, y, hs, hopt, alpha=0.05):
st = scipy.stats
n = x.size
xmin, xmax = x.min(), x.max()
ni = max(2 * int((xmax - xmin) / hopt) + 3, 5)
sml = hopt * 0.1
xi = np.linspace(xmin - sml, xmax + sml, ni)
xiii = np.linspace(xmin - sml, xmax + sml, 4 * ni + 1)
kreg = KRegression(x, y, hs=hs, p=0)
dx = xi[1] - xi[0]
ciii = kreg.tkde.eval_grid_fast(xiii) * dx * x.size
# ckreg = KDE(x,hs=hs)
# ciiii = ckreg.eval_grid_fast(xiii)*dx* x.size #n*(1+symmetric)
f = kreg(xiii, output='plotobj') # , plot_kwds=dict(plotflag=7))
pi = f.data
# Jeffreys intervall a=b=0.5
# st.beta.isf(alpha/2, x+a, n-x+b)
ab = 0.07 # 0.5
pi1 = pi
pup = np.where(pi1 == 1, 1, st.beta.isf(
alpha / 2, ciii * pi1 + ab, ciii * (1 - pi1) + ab))
plo = np.where(pi1 == 0, 0, st.beta.isf(
1 - alpha / 2, ciii * pi1 + ab, ciii * (1 - pi1) + ab))
# Wilson score
# z0 = -_invnorm(alpha/2)
# den = 1+(z0**2./ciii);
# xc=(pi1+(z0**2)/(2*ciii))/den;
# halfwidth=(z0*sqrt((pi1*(1-pi1)/ciii)+(z0**2/(4*(ciii**2)))))/den
# plo2 = (xc-halfwidth).clip(min=0) # wilson score
# pup2 = (xc+halfwidth).clip(max=1.0) # wilson score
# f.dataCI = np.vstack((plo,pup)).T
f.prediction_error_avg = np.trapz(pup - plo, xiii) / (xiii[-1] - xiii[0])
fiii = f.data
c = gridcount(x, xi)
if (y == 1).any():
c0 = gridcount(x[y == 1], xi)
else:
c0 = np.zeros(np.shape(xi))
yi = np.where(c == 0, 0, c0 / c)
f.children = [PlotData([plo, pup], xiii, plotmethod='fill_between',
plot_kwds=dict(alpha=0.2, color='r')),
PlotData(yi, xi, plotmethod='scatter',
plot_kwds=dict(color='r', s=5))]
yiii = interpolate.interp1d(xi, yi)(xiii)
df = np.diff(fiii)
k = (df[:-1] * df[1:] < 0).sum() # numpeaks
sigmai = (pup - plo)
aicc = (((yiii - fiii) / sigmai) ** 2).sum() + \
2 * k * (k + 1) / np.maximum(ni - k + 1, 1) + \
np.abs((yiii - pup).clip(min=0) - (yiii - plo).clip(max=0)).sum()
f.aicc = aicc
f.labels.title = ('perr={:1.3f},aicc={:1.3f}, n={:d}, '
'hs={:1.3f}'.format(f.prediction_error_avg, aicc, n, hs))
return f
def check_kreg_demo3():
plt.ion()
k = 0
for n in [50, 100, 300, 600, 4000]:
x, y, fun1 = _get_data(
n, symmetric=True, loc1=1.0, scale1=0.6, scale2=1.25)
k0 = k
for fun in ['hste', ]:
hsmax, _hs1, _hs2 = _get_regression_smooting(x, y, fun=fun)
for hi in np.linspace(hsmax * 0.25, hsmax, 9):
plt.figure(k)
k += 1
unused = kreg_demo3(x, y, fun1, hs=hi, fun=fun, plotlog=False)
# kreg_demo2(n=n,symmetric=True,fun='hste', plotlog=False)
fig.tile(range(k0, k))
plt.ioff()
plt.show()
def check_kreg_demo4():
plt.ion()
# test_docstrings()
# kde_demo2()
# kreg_demo1(fast=True)
# kde_gauss_demo()
# kreg_demo2(n=120,symmetric=True,fun='hste', plotlog=True)
k = 0
for _i, n in enumerate([100, 300, 600, 4000]):
x, y, fun1 = _get_data(
n, symmetric=True, loc1=0.1, scale1=0.6, scale2=0.75)
# k0 = k
hopt1, _h1, _h2 = _get_regression_smooting(x, y, fun='hos')
hopt2, _h1, _h2 = _get_regression_smooting(x, y, fun='hste')
hopt = sqrt(hopt1 * hopt2)
# hopt = _get_regression_smooting(x,y,fun='hos')[0]
for _j, fun in enumerate(['hste']): # , 'hisj', 'hns', 'hstt'
hsmax, _hs1, _hs2 = _get_regression_smooting(x, y, fun=fun)
fmax = kreg_demo4(x, y, hsmax + 0.1, hopt)
for hi in np.linspace(hsmax * 0.1, hsmax, 55):
f = kreg_demo4(x, y, hi, hopt)
if f.aicc <= fmax.aicc:
fmax = f
plt.figure(k)
k += 1
fmax.plot()
plt.plot(x, fun1(x), 'r')
# kreg_demo2(n=n,symmetric=True,fun='hste', plotlog=False)
fig.tile(range(0, k))
plt.ioff()
plt.show()
def check_regression_bin():
plt.ion()
# test_docstrings()
# kde_demo2()
# kreg_demo1(fast=True)
# kde_gauss_demo()
# kreg_demo2(n=120,symmetric=True,fun='hste', plotlog=True)
k = 0
for _i, n in enumerate([100, 300, 600, 4000]):
x, y, fun1 = _get_data(
n, symmetric=True, loc1=0.1, scale1=0.6, scale2=0.75)
fbest = regressionbin(x, y, alpha=0.05, color='g', label='Transit_D')
figk = plt.figure(k)
ax = figk.gca()
k += 1
fbest.labels.title = 'N = {:d}'.format(n)
fbest.plot(axis=ax)
ax.plot(x, fun1(x), 'r')
ax.legend(frameon=False, markerscale=4)
# ax = plt.gca()
ax.set_yticklabels(ax.get_yticks() * 100.0)
ax.grid(True)
fig.tile(range(0, k))
plt.ioff()
plt.show()
def check_bkregression():
plt.ion()
k = 0
for _i, n in enumerate([50, 100, 300, 600]):
x, y, fun1 = _get_data(n, symmetric=True, loc1=0.1,
scale1=0.6, scale2=0.75)
bkreg = BKRegression(x, y, a=0.05, b=0.05)
fbest = bkreg.prb_search_best(
hsfun='hste', alpha=0.05, color='g', label='Transit_D')
figk = plt.figure(k)
ax = figk.gca()
k += 1
# fbest.score.plot(axis=ax)
# axsize = ax.axis()
# ax.vlines(fbest.hs,axsize[2]+1,axsize[3])
# ax.set(yscale='log')
fbest.labels.title = 'N = {:d}'.format(n)
fbest.plot(axis=ax)
ax.plot(x, fun1(x), 'r')
ax.legend(frameon=False, markerscale=4)
# ax = plt.gca()
ax.set_yticklabels(ax.get_yticks() * 100.0)
ax.grid(True)
fig.tile(range(0, k))
plt.ioff()
plt.show('hold')
def _get_regression_smooting(x, y, fun='hste'):
hs1 = Kernel('gauss', fun=fun).get_smoothing(x)
# hx = np.median(np.abs(x-np.median(x)))/0.6745*(4.0/(3*n))**0.2
if (y == 1).any():
hs2 = Kernel('gauss', fun=fun).get_smoothing(x[y == 1])
# hy = np.median(np.abs(y-np.mean(y)))/0.6745*(4.0/(3*n))**0.2
else:
hs2 = 4 * hs1
# hy = 4*hx
# hy2 = Kernel('gauss', fun=fun).get_smoothing(y)
# kernel = Kernel('gauss',fun=fun)
# hopt = (hs1+2*hs2)/3
# hopt = (hs1+4*hs2)/5 #kernel.get_smoothing(x)
# hopt = hs2
hopt = sqrt(hs1 * hs2)
return hopt, hs1, hs2
def empirical_bin_prb(x, y, hopt, color='r'):
"""Returns empirical binomial probabiltity.
Parameters
----------
x : ndarray
position ve
y : ndarray
binomial response variable (zeros and ones)
Returns
-------
P(x) : PlotData object
empirical probability
"""
xmin, xmax = x.min(), x.max()
ni = max(2 * int((xmax - xmin) / hopt) + 3, 5)
sml = hopt # *0.1
xi = np.linspace(xmin - sml, xmax + sml, ni)
c = gridcount(x, xi)
if (y == 1).any():
c0 = gridcount(x[y == 1], xi)
else:
c0 = np.zeros(np.shape(xi))
yi = np.where(c == 0, 0, c0 / c)
return PlotData(yi, xi, plotmethod='scatter',
plot_kwds=dict(color=color, s=5))
def smoothed_bin_prb(x, y, hs, hopt, alpha=0.05, color='r', label='',
bin_prb=None):
'''
Parameters
----------
x,y
hs : smoothing parameter
hopt : spacing in empirical_bin_prb
alpha : confidence level
color : color of plot object
bin_prb : PlotData object with empirical bin prb
'''
if bin_prb is None:
bin_prb = empirical_bin_prb(x, y, hopt, color)
xi = bin_prb.args
yi = bin_prb.data
ni = len(xi)
dxi = xi[1] - xi[0]
n = x.size
xiii = np.linspace(xi[0], xi[-1], 10 * ni + 1)
kreg = KRegression(x, y, hs=hs, p=0)
# expected number of data in each bin
ciii = kreg.tkde.eval_grid_fast(xiii) * dxi * n
f = kreg(xiii, output='plotobj') # , plot_kwds=dict(plotflag=7))
pi = f.data
st = scipy.stats
# Jeffreys intervall a=b=0.5
# st.beta.isf(alpha/2, x+a, n-x+b)
ab = 0.07 # 0.5
pi1 = pi
pup = np.where(pi1 == 1, 1, st.beta.isf(
alpha / 2, ciii * pi1 + ab, ciii * (1 - pi1) + ab))
plo = np.where(pi1 == 0, 0, st.beta.isf(
1 - alpha / 2, ciii * pi1 + ab, ciii * (1 - pi1) + ab))
# Wilson score
# z0 = -_invnorm(alpha/2)
# den = 1+(z0**2./ciii);
# xc=(pi1+(z0**2)/(2*ciii))/den;
# halfwidth=(z0*sqrt((pi1*(1-pi1)/ciii)+(z0**2/(4*(ciii**2)))))/den
# plo2 = (xc-halfwidth).clip(min=0) # wilson score
# pup2 = (xc+halfwidth).clip(max=1.0) # wilson score
# f.dataCI = np.vstack((plo,pup)).T
f.prediction_error_avg = np.trapz(pup - plo, xiii) / (xiii[-1] - xiii[0])
fiii = f.data
f.plot_kwds['color'] = color
f.plot_kwds['linewidth'] = 2
if label:
f.plot_kwds['label'] = label
f.children = [PlotData([plo, pup], xiii, plotmethod='fill_between',
plot_kwds=dict(alpha=0.2, color=color)),
bin_prb]
yiii = interpolate.interp1d(xi, yi)(xiii)
df = np.diff(fiii)
k = (df[:-1] * df[1:] < 0).sum() # numpeaks
sigmai = (pup - plo)
aicc = (((yiii - fiii) / sigmai) ** 2).sum() + \
2 * k * (k + 1) / np.maximum(ni - k + 1, 1) + \
np.abs((yiii - pup).clip(min=0) - (yiii - plo).clip(max=0)).sum()
f.aicc = aicc
f.fun = kreg
ttl = "perr={0:1.3f}, aicc={1:1.3f}, n={2:d}, hs={3}"
f.labels.title = ttl.format(f.prediction_error_avg, aicc, n, hs)
return f
def regressionbin(x, y, alpha=0.05, color='r', label=''):
"""Return kernel regression estimate for binomial data.
Parameters
----------
x : arraylike
positions
y : arraylike
of 0 and 1
"""
hopt1, _h1, _h2 = _get_regression_smooting(x, y, fun='hos')
hopt2, _h1, _h2 = _get_regression_smooting(x, y, fun='hste')
hopt = sqrt(hopt1 * hopt2)
fbest = smoothed_bin_prb(x, y, hopt2 + 0.1, hopt, alpha, color, label)
bin_prb = fbest.children[-1]
for fun in ['hste']: # , 'hisj', 'hns', 'hstt'
hsmax, _hs1, _hs2 = _get_regression_smooting(x, y, fun=fun)
for hi in np.linspace(hsmax * 0.1, hsmax, 55):
f = smoothed_bin_prb(x, y, hi, hopt, alpha, color, label, bin_prb)
if f.aicc <= fbest.aicc:
fbest = f
# hbest = hi
return fbest
if __name__ == '__main__':
if False:
test_docstrings(__file__)
else:
# kde_demo5()
check_bkregression()
# check_regression_bin()
# check_kreg_demo3()
# check_kreg_demo4()
# kreg_demo1(fast=True)
# kreg_demo2(n=120,symmetric=True,fun='hste', plotlog=True)
plt.show('hold')