You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

652 lines
17 KiB
Fortran

C Version 1994-X-18
C This is a new version of WAMP program computing crest-trough wavelength
C and amplitude density.
C
C revised pab 2007
C -moved all common blocks into modules
C -renamed from minmax to sp2mmpdfreg + fixed some bugs
C revised pab July 2007
! -renamed from sp2mmpdfreg to cov2mmpdfreg
PROGRAM cov2mmpdfreg
USE SIZEMOD
USE EPSMOD
USE CHECKMOD
USE MREGMOD
IMPLICIT NONE
real*8 Q0,SQ0,Q1,SQ1, AA, BB, DAI, AI , U,V,VV, XL0, XL2, XL4
REAL*8 VDERI, CDER,SDER, DER, CONST, F, HHHH,FM, VALUE
C INTEGER, PARAMETER :: MMAX = 5, NMAX = 101, RDIM = 10201
REAL*8, DIMENSION(NMAX) :: HHT,T,Ulev,Vlev,VT,UT,Vdd,Udd
REAL*8, DIMENSION(RDIM) :: R,R1,R2,R3
REAL*8, DIMENSION(5*NMAX) :: COV
REAL*8, DIMENSION(NMAX,NMAX) :: UVdens
C DIMENSION UVdens(NMAX,NMAX),HHT(NMAX)
C DIMENSION T(NMAX),Ulev(NMAX),Vlev(NMAX)
C DIMENSION VT(NMAX),UT(NMAX),Vdd(NMAX),Udd(NMAX)
C DIMENSION COV(5*NMAX),R(RDIM),R1(RDIM),R2(RDIM),R3(RDIM)
DIMENSION AA(MMAX-2,MMAX-2),BB(MMAX+1),DAI(MMAX),AI((MMAX+1)*NMAX)
C
C The program computes the joint density of maximum the following minimum
C and the distance between Max and min for a zero-mean stationary
C Gaussian process with covariance function defined explicitely with 4
C derivatives. The process should be normalized so that the first and
C the second spectral moments are equal to 1. The values of Max are taken
C as the nodes at Hermite-Quadrature and then integrated out so that
C the output is a joint density of wavelength T and amplitude H=Max-min.
C The Max values are defined by subroutine Gauss_M with the accuracy
C input epsu. The principle is that the integral of the marginal density
C of f_Max is computed with sufficient accuracy.
C
REAL*8, DIMENSION(NMAX) :: B0,DB0,DDB0,B1,DB1,DDB1,DB2,DDB2
REAL*8, DIMENSION(NMAX) :: Q,SQ,VDER,DBI,BI
C DIMENSION B0(NMAX),DB0(NMAX),DDB0(NMAX)
C DIMENSION B1(NMAX),DB1(NMAX),DDB1(NMAX)
C DIMENSION DB2(NMAX),DDB2(NMAX)
C DIMENSION Q(NMAX),SQ(NMAX),VDER(NMAX),DBI(NMAX),BI(NMAX)
INTEGER :: J,I,I1,I2,I3,IU, IV, NU,NV,NG,N,NIT, NNIT, INF
INTEGER :: fffff
C REAL*8 EPS0
C INTEGER III01,III11,III21,III31,III41,III51
C *,III61,III71,III81,III91,III101 , III0
C COMMON/CHECK1/III01,III11,III21,III31,III41,III51
C *,III61,III71,III81,III91,III101
C COMMON/CHECKQ/III0
C COMMON /EPS/ EPS,EPSS,CEPSS
C
C Initiation of all constants and integration nodes 'INITINTEG'
C
CALL INITINTEG(NIT)
c
c OBS. we are using the variables R,R1,R2 R3 as a temporary storage
C for transformation g of the process.
c
CALL INITLEVELS(Ulev,NU,Vlev,NV,T,HHT,N,R1,R2,NG)
IF( R1(1) .gt. R1(ng)) then
do 13 I=1,ng
R3(I)=R1(I)
R(I) =R2(I)
13 continue
do 17 i=1,ng
R1(i) = R3(ng-i+1)
R2(i) = R(ng-i+1)
17 continue
end if
if(abs(R1(ng)-R1(1))*abs(R2(ng)-R2(1)).lt.0.01d0) then
print *,'The transformation g is singular, stop'
stop
end if
DO 14 IV=1,Nv
V=Vlev(IV)
CALL TRANSF(NG,V,R2,R1,VALUE,DER)
VT(IV)=VALUE
Vdd(IV)=DER
14 continue
DO 16 IU=1,Nu
U = Ulev(IU)
CALL TRANSF(NG,U,R2,R1,VALUE,DER)
UT(IU) = VALUE
Udd(IU) = DER
do 16 IV=1,Nv
UVdens(IU,IV)=0.0d0
16 CONTINUE
CALL COVG(XL0,XL2,XL4,COV,R1,R2,R3,T,N)
Q0=XL4
IF (Q0.le.1.0D0+EPS) then
Print *,'Covariance structure is singular, stop.'
stop
end if
SQ0 = SQRT(Q0)
Q1 = XL0-XL2*XL2/XL4
IF (Q1.le.eps) then
Print *,'Covariance structure is singular, stop.'
stop
end if
SQ1 = SQRT(Q1)
DO 10 I=1,N
B0(I) =-COV(I+2*N)
DB0(I) =-COV(I+3*N)
DDB0(I)=-COV(I+4*N)
B1(I) =COV(I)+COV(I+2*N)*(XL2/XL4)
DB1(I) =COV(I+N)+COV(I+3*N)*(XL2/XL4)
DDB1(I)=COV(I+2*N)+XL2*(COV(I+4*N)/XL4)
C
C Q(I) contains Var(X(T(i))|X'(0),X''(0),X(0))
C VDER(I) contains Var(X''(T(i))|X'(0),X''(0),X(0))
C
Q(I)=XL0 - COV(I+N)*(COV(I+N)/XL2) - B0(I)*(B0(I)/Q0)
1 -B1(I)*(B1(I)/Q1)
VDER(I)=XL4 - (COV(I+3*N)*COV(I+3*N))/XL2 - (DDB0(I)*DDB0(I))/Q0
1 - (DDB1(I)*DDB1(I))/Q1
C
C DDB2(I) contains Cov(X''(T(i)),X(T(i))|X'(0),X''(0),X(0))
C
DDB2(I)=-XL2 - (COV(I+N)*COV(I+3*N))/XL2 - DDB0(I)*(B0(I)/Q0)
1 -DDB1(I)*(B1(I)/Q1)
IF(Q(I).LE.eps) then
SQ(i) =0.0d0
DDB2(i)=0.0d0
else
SQ(I)=SQRT(Q(I))
C
C VDER(I) contains Var(X''(T(i))|X'(0),X''(0),X(0),X(T(i))
C
VDER(I)=VDER(I) - (DDB2(I)*DDB2(I))/Q(I)
end if
10 CONTINUE
DO 15 I=1,N
DO 15 J=1,N
C
C R1 contains Cov(X(T(I)),X'(T(J))|X'(0),X''(0),X(0))
C
R1(J+(I-1)*N)=R1(J+(I-1)*N) - COV(I+N)*(COV(J+2*N)/XL2)
1 - (B0(I)*DB0(J)/Q0) - (B1(I)*DB1(J)/Q1)
C
C R2 contains Cov(X'(T(I)),X'(T(J))|X'(0),X''(0),X(0))
C
R2(J+(I-1)*N) = -R2(J+(I-1)*N) - COV(I+2*N)*(COV(J+2*N)/XL2)
1 - DB0(I)*DB0(J)/Q0 - DB1(I)*(DB1(J)/Q1)
C
C R3 contains Cov(X''(T(I)),X'(T(J))|X'(0),X''(0),X(0))
C
R3(J+(I-1)*N) = R3(J+(I-1)*N) - COV(I+3*N)*(COV(J+2*N)/XL2)
1 - DB0(J)*(DDB0(I)/Q0) - DDB1(I)*(DB1(J)/Q1)
15 CONTINUE
C The initiations are finished and we are beginning with 3 loops
C on T=T(I), U=Ulevels(IU), V=Ulevels(IV), U>V.
DO 20 I=1,N
NNIT=NIT
IF (Q(I).LE.EPS) GO TO 20
DO 30 I1=1,I
DB2(I1)=R1(I1+(I-1)*N)
C Cov(X'(T(I1)),X(T(i))|X'(0),X''(0),X(0))
C DDB2(I) contains Cov(X''(T(i)),X(T(i))|X'(0),X''(0),X(0))
30 CONTINUE
DO 50 I3=1,I
DBI(I3) = R3(I3+(I-1)*N) - (DDB2(I)*DB2(I3)/Q(I))
BI(I3) = R2(I3+(I-1)*N) - (DB2(I)*DB2(I3)/Q(I))
50 CONTINUE
DO 51 I3=1,I-1
AI(I3)=0.0d0
AI(I3+I-1)=DB0(I3)/SQ0
AI(I3+2*(I-1))=DB1(I3)/SQ1
AI(I3+3*(I-1))=DB2(I3)/SQ(I)
51 CONTINUE
VDERI=VDER(I)
DAI(1)=0.0d0
DAI(2)=DDB0(I)/SQ0
DAI(3)=DDB1(I)/SQ1
DAI(4)=DDB2(I)/SQ(I)
AA(1,1)=DB0(I)/SQ0
AA(1,2)=DB1(I)/SQ1
AA(1,3)=DB2(I)/SQ(I)
AA(2,1)=XL2/SQ0
AA(2,2)=SQ1
AA(2,3)=0.0d0
AA(3,1)=B0(I)/SQ0
AA(3,2)=B1(I)/SQ1
AA(3,3)=SQ(I)
IF (BI(I).LE.EPS) NNIT=0
IF (NNIT.GT.1) THEN
IF(I.LT.1) GO TO 41
DO 40 I1=1,I-1
DO 40 I2=1,I-1
C R contains Cov(X'(T(I1)),X'(T(I2))|X'(0),X''(0),X(0),X(I))
R(I2+(I1-1)*(I-1))=R2(I2+(I1-1)*N)-(DB2(I1)*DB2(I2)/Q(I))
40 CONTINUE
41 CONTINUE
END IF
C Here the covariance of the problem would be innitiated
INF=0
Print *,' Laps to go:',N-I+1
DO 80 IV=1,Nv
V=VT(IV)
! IF (ABS(V).GT.5.0D0) GO TO 80
IF (Vdd(IV).LT.EPS0) GO TO 80
DO 60 IU=1,Nu
U=UT(IU)
IF (U.LE.V) go to 60
! IF (ABS(U).GT.5.0D0) GO TO 60
IF (Udd(IU).LT.EPS0) GO TO 60
BB(1)=0.0d0
BB(2)=U
BB(3)=V
! if (IV.EQ.2.AND.IU.EQ.1) THEN
! fffff = 10
! endif
CALL MREG(F,R,BI,DBI,AA,BB,AI,DAI,VDERI,3,I-1,NNIT,INF)
INF=1
UVdens(IU,IV) = UVdens(IU,IV) + Udd(IU)*Vdd(IV)*HHT(I)*F
! if (F.GT.0.01.AND.U.GT.2.AND.V.LT.-2) THEN
! if (N-I+1 .eq. 38.and.IV.EQ.26.AND.IU.EQ.16) THEN
! if (IV.EQ.32.AND.IU.EQ.8.and.I.eq.11) THEN
! PRINT * ,' R:', R(1:I)
! PRINT * ,' BI:', BI(1:I)
! PRINT * ,' DBI:', DBI(1:I)
! PRINT * ,' DB2:', DB2(1:I)
! PRINT * ,' DB0(1):', DB0(1)
! PRINT * ,' DB1(1):', DB1(1)
! PRINT * ,' DAI:', DAI
! PRINT * ,' BB:', BB
! PRINT * ,' VDERI:', VDERI
! PRINT * ,' F :', F
! PRINT * ,' UVDENS :', UVdens(IU,IV)
! fffff = 10
! endif
60 CONTINUE
80 continue
20 CONTINUE
hhhh=0.0d0
do 90 Iu=1,Nu
do 90 Iv=1,Nv
WRITE(10,300) Ulev(iu),Vlev(iv),UVdens(iu,iv)
hhhh=hhhh+UVdens(iu,iv)
90 continue
if (nu.gt.1.and.nv.gt.1) then
write(11,*) 'SumSum f_uv *du*dv='
1,(Ulev(2)-Ulev(1))*(Vlev(2)-Vlev(1))*hhhh
end if
C sder=sqrt(XL4-XL2*XL2/XL0)
C cder=-XL2/sqrt(XL0)
C const=1/sqrt(XL0*XL4)
C DO 95 IU=1,NU
C U=UT(IU)
C FM=Udd(IU)*const*exp(-0.5*U*U/XL0)*PMEAN(-cder*U,sder)
C WRITE(9,300) Ulev(IU),FM
C 95 continue
C DO 105 IV=1,NV
C V=VT(IV)
C VV=cder*V
C Fm=Vdd(IV)*const*exp(-0.5*V*V/XL0)*PMEAN(VV,sder)
C WRITE(8,300) Vlev(IV),Fm
C 105 continue
if (III0.eq.0) III0=1
write(11,*) 'Rate of calls RINDT0:',float(iii01)/float(III0)
write(11,*) 'Rate of calls RINDT1:',float(iii11)/float(III0)
write(11,*) 'Rate of calls RINDT2:',float(iii21)/float(III0)
write(11,*) 'Rate of calls RINDT3:',float(iii31)/float(III0)
write(11,*) 'Rate of calls RINDT4:',float(iii41)/float(III0)
write(11,*) 'Rate of calls RINDT5:',float(iii51)/float(III0)
write(11,*) 'Rate of calls RINDT6:',float(iii61)/float(III0)
write(11,*) 'Rate of calls RINDT7:',float(iii71)/float(III0)
write(11,*) 'Rate of calls RINDT8:',float(iii81)/float(III0)
write(11,*) 'Rate of calls RINDT9:',float(iii91)/float(III0)
write(11,*) 'Rate of calls RINDT10:',float(iii101)/float(III0)
write(11,*) 'Number of calls of RINDT*',III0
CLOSE(UNIT=8)
CLOSE(UNIT=9)
CLOSE(UNIT=10)
CLOSE(UNIT=11)
300 FORMAT(4(3X,F10.6))
STOP
END
SUBROUTINE INITLEVELS(ULEVELS,NU,Vlevels,Nv,T,HT,N,TG,XG,NG)
USE TBRMOD
USE SIZEMOD
IMPLICIT NONE
C INTEGER, PARAMETER:: NMAX = 101, RDIM = 10201
C DIMENSION ULEVELS(1),Vlevels(1),T(1),HT(1),TG(1),XG(1),HH(101)
REAL*8, DIMENSION(NMAX), intent(inout) :: ULEVELS,Vlevels,T,HT
REAL*8, DIMENSION(RDIM), intent(inout) :: TG,XG
INTEGER, intent(inout) :: NG
REAL*8 :: UMIN,UMAX,VMIN,VMAX, HU,HV
integer :: N, I, NU, NV
C REAL*8, DIMENSION(NMAX) :: HH
C COMMON/TBR/HH
OPEN(UNIT=2,FILE='transf.in')
OPEN(UNIT=4,FILE='Mm.in')
OPEN(UNIT=3,FILE='t.in')
NG=1
12 READ (2,*,END=11) TG(NG),XG(NG)
NG=NG+1
GO TO 12
11 CONTINUE
NG=NG-1
IF (NG.GT.501) THEN
PRINT *,'Vector defining transformation of data > 501, stop'
STOP
END IF
N=1
32 READ (3,*,END=31) T(N)
N=N+1
GO TO 32
31 CONTINUE
N=N-1
CLOSE(UNIT=3)
IF(N.ge.NMAX) then
print *,'The number of wavelength points >',NMAX-1, ' stop'
stop
end if
IF(N.lt.2) then
print *,'The number of wavelength points < 2, stop'
stop
end if
HT(1)=0.5d0*(T(2)-T(1))
HT(N)=0.5d0*(T(N)-T(N-1))
HH(1)=-100.0d0
HH(N)=-100.0d0
DO 10 I=2,N-1
HT(I)=0.5d0*(T(I+1)-T(I-1))
HH(I)=-100.0d0
10 CONTINUE
READ(4,*) Umin,Umax,NU
READ(4,*) Vmin,Vmax,NV
IF(NU.gt.NMAX) then
print *,'The number of maxima >',NMAX,' stop'
stop
end if
IF(NV.gt.NMAX) then
print *,'The number of minima >',NMAX,' stop'
stop
end if
IF(NU.LT.1) Then
print *,'The number of maxima < 1, stop'
stop
end if
IF(NV.LT.1) Then
print *,'The number of minima < 1, stop'
stop
end if
Ulevels(1)=Umax
IF (NU.lt.2) go to 25
HU=(Umax-Umin)/DBLE(NU-1)
DO 20 I=1,NU-1
ULEVELS(I+1)=Umax-DBLE(I)*HU
20 CONTINUE
25 continue
Vlevels(1)=Vmax
IF (NV.lt.2) go to 35
HV=(Vmax-Vmin)/DBLE(NV-1)
DO 30 I=1,Nv-1
VLEVELS(I+1)=Vmax-DBLE(I)*HV
30 CONTINUE
35 continue
CLOSE(UNIT=4)
RETURN
END
SUBROUTINE TRANSF(N,T,A,TIMEV,VALUE,DER)
C
C N number of data points
C TIMEV vector of time points
C A a vector of values of a function G(TIME)
C T independent time point
C VALUE is a value of a function at T, i.e. VALUE=G(T).
c DER=G'(t)
C
USE SIZEMOD
IMPLICIT NONE
REAL*8, intent(inout):: VALUE, DER,T
C INTEGER, PARAMETER :: RDIM = 10201
REAL*8, DIMENSION(RDIM), intent(in) :: A,TIMEV
integer, intent(in) :: N
REAL*8:: T1
integer :: I
IF (T.LT.TIMEV(1)) then
der=(A(2)-A(1))/(TIMEV(2)-TIMEV(1))
T1=T-TIMEV(1)
VALUE=A(1)+T1*DER
return
end if
IF (T.GT.TIMEV(N)) then
der = (A(N)-A(N-1))/(TIMEV(N)-TIMEV(N-1))
T1 = T-TIMEV(N)
VALUE=A(N)+T1*DER
return
end if
DO 5 I=2,N
IF (T.LT.TIMEV(I)) GO TO 10
5 CONTINUE
10 I=I-1
T1=T-TIMEV(I)
DER=(A(I+1)-A(I))/(TIMEV(i+1)-TIMEV(I))
VALUE=A(I)+T1*DER
RETURN
END
REAL*8 FUNCTION SPLE(N,T,A,TIMEV)
C
C N number of data points
C TIME vector of time points
C A a vector of values of a function G(TIME)
C T independent time point
C SPLE is a value of a function at T, i.e. SPLE=G(T).
C
USE SIZEMOD
IMPLICIT NONE
INTEGER, INTENT(IN):: N
REAL*8, INTENT(IN) :: T
REAL*8, DIMENSION(5*NMAX), INTENT(IN) :: A,TIMEV
REAL*8 :: T1
INTEGER :: I
SPLE=-9.9d0
IF (T.LT.TIMEV(1) .OR. T.GT.TIMEV(N)) RETURN
DO 5 I=2,N
IF (T.LT.TIMEV(I)) GO TO 10
5 CONTINUE
10 I=I-1
T1=T-TIMEV(I)
SPLE=A(I)+T1*(A(I+1)-A(I))/(TIMEV(i+1)-TIMEV(I))
RETURN
END
SUBROUTINE COVG(XL0,XL2,XL4,COV,COV1,COV2,COV3,T,N)
C
C COVG evaluates:
C
C XL0,XL2,XL4 - spectral moments.
C
C Covariance function and its four derivatives for a vector T of length N.
C It is saved in a vector COV; COV(1,...,N)=r(T), COV(N+1,...,2N)=r'(T), etc.
C The vector COV should be of the length 5*N.
C
C Covariance matrices COV1=r'(T-T), COV2=r''(T-T) and COV3=r'''(T-T)
C Dimension of COV1, COV2 should be N*N.
C
USE SIZEMOD
! IMPLICIT NONE
C INTEGER, PARAMETER:: NMAX = 101, RDIM = 10201
REAL*8, PARAMETER:: ZERO = 0.0d0
REAL*8, intent(inout) :: XL0,XL2,XL4
REAL*8, DIMENSION(5*NMAX), intent(inout) :: COV
REAL*8, DIMENSION(5*NMAX) :: A, TIMEV
REAL*8, DIMENSION(RDIM), intent(inout) :: COV1,COV2,COV3
REAL*8, DIMENSION(NMAX), intent(in) :: T
INTEGER, intent(in) :: N
integer :: NT, I, J, II
REAL*8 :: TT, T0
OPEN(UNIT=32,FILE='Cd0.in')
OPEN(UNIT=33,FILE='Cd1.in')
OPEN(UNIT=34,FILE='Cd2.in')
OPEN(UNIT=35,FILE='Cd3.in')
OPEN(UNIT=36,FILE='Cd4.in')
C
C COV(Y(T),Y(0))
C
NT=1
12 READ (32,*,END=11) TIMEV(NT),A(NT)
NT=NT+1
GO TO 12
11 CONTINUE
NT=NT-1
XL0=SPLE(NT,ZERO,A,TIMEV)
DO 10 I=1,N
COV(I)=SPLE(NT,T(I),A,TIMEV)
10 CONTINUE
C
C DERIVATIVE COV(Y(T),Y(0))
C
NT=1
22 READ (33,*,END=21) TIMEV(NT),A(NT)
NT=NT+1
GO TO 22
21 CONTINUE
NT=NT-1
II=0
DO 20 I=1,N
COV(I+N)=SPLE(NT,T(I),A,TIMEV)
DO 20 J=1,N
II=II+1
T0=T(J)-T(I)
TT=ABS(T0)
COV1(II)=SPLE(NT,TT,A,TIMEV)
IF (T0.LT.0.0d0) COV1(II)=-COV1(II)
20 CONTINUE
C 2-DERIVATIVE COV(Y(T),Y(0))
NT=1
32 READ (34,*,END=31) TIMEV(NT),A(NT)
NT=NT+1
GO TO 32
31 CONTINUE
NT=NT-1
II=0
XL2=-SPLE(NT,ZERO,A,TIMEV)
DO 30 I=1,N
COV(I+2*N)=SPLE(NT,T(I),A,TIMEV)
DO 30 J=1,N
II=II+1
TT=ABS(T(J)-T(I))
COV2(II)=SPLE(NT,TT,A,TIMEV)
30 CONTINUE
C 3-DERIVATIVE COV(Y(T),Y(0))
NT=1
42 READ (35,*,END=41) TIMEV(NT),A(NT)
NT=NT+1
GO TO 42
41 CONTINUE
NT=NT-1
II=0
DO 40 I=1,N
COV(I+3*N)=SPLE(NT,T(I),A,TIMEV)
DO 40 J=1,N
II=II+1
T0=T(J)-T(I)
TT=ABS(T0)
COV3(II)=SPLE(NT,TT,A,TIMEV)
IF (T0.LT.0.0d0) COV3(II)=-COV3(II)
40 CONTINUE
C 4-DERIVATIVE COV(Y(T),Y(0))
NT=1
52 READ (36,*,END=51) TIMEV(NT),A(NT)
NT=NT+1
GO TO 52
51 CONTINUE
NT=NT-1
XL4=SPLE(NT,ZERO,A,TIMEV)
DO 50 I=1,N
COV(I+4*N)=SPLE(NT,T(I),A,TIMEV)
50 CONTINUE
CLOSE(UNIT=32)
CLOSE(UNIT=33)
CLOSE(UNIT=34)
CLOSE(UNIT=35)
CLOSE(UNIT=36)
RETURN
END
SUBROUTINE INITINTEG(NIT)
USE RINTMOD
USE EPSMOD
USE INFCMOD
USE MREGMOD
! IMPLICIT NONE
INTEGER, intent(inout) :: NIT
! INTEGER ISQ1
C dimension INF(10),INFO(10)
C COMMON /RINT/ C,FC
C COMMON /EPS/ EPS,EPSS,CEPSS
C COMMON /INFC/ ISQ,INF,INFO
OPEN(UNIT=1,FILE='accur.in')
OPEN(UNIT=8,FILE='min.out')
OPEN(UNIT=9,FILE='Max.out')
OPEN(UNIT=10,FILE='Maxmin.out')
OPEN(UNIT=11,FILE='Maxmin.log')
READ(1,*) NIT,IAC,ISQ
READ(1,*) EPS,EPSS,EPS0
CLOSE (UNIT=1)
FC=FI(C)-FI(-C)
CEPSS=1.0d0-EPSS
RETURN
END