You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
166 lines
4.6 KiB
Python
166 lines
4.6 KiB
Python
'''
|
|
Created on 17. juli 2010
|
|
|
|
@author: pab
|
|
'''
|
|
import numpy as np # @UnusedImport
|
|
from numpy import pi, inf # @UnusedImport
|
|
from numpy.testing import assert_array_almost_equal
|
|
from wafo.gaussian import (Rind, prbnormtndpc, prbnormndpc, prbnormnd,
|
|
cdfnorm2d, prbnorm2d)
|
|
|
|
|
|
def test_rind():
|
|
|
|
Et = 0.001946 # exact prob.
|
|
n = 5
|
|
Blo = -np.inf
|
|
Bup = -1.2
|
|
indI = [-1, n - 1] # Barriers
|
|
m = np.zeros(n)
|
|
rho = 0.3
|
|
Sc = (np.ones((n, n)) - np.eye(n)) * rho + np.eye(n)
|
|
rind = Rind()
|
|
E0, err0, terr0 = rind(Sc, m, Blo, Bup, indI)
|
|
|
|
assert(np.abs(E0 - Et) < err0 + terr0)
|
|
|
|
t = 'E0 = %2.6f' % E0
|
|
assert(t == 'E0 = 0.001946')
|
|
|
|
A = np.repeat(Blo, n)
|
|
B = np.repeat(Bup, n) # Integration limits
|
|
E1, err1, terr1 = rind(np.triu(Sc), m, A, B) # same as E0
|
|
assert(np.abs(E1 - Et) < err0 + terr0)
|
|
|
|
t = 'E1 = %2.5f' % E1
|
|
assert(t == 'E1 = 0.00195')
|
|
|
|
# Compute expectation E( abs(X1*X2*...*X5) )
|
|
xc = np.zeros((0, 1))
|
|
infinity = 37
|
|
dev = np.sqrt(np.diag(Sc)) # std
|
|
ind = np.nonzero(indI[1:])[0]
|
|
Bup, Blo = np.atleast_2d(Bup, Blo)
|
|
Bup[0, ind] = np.minimum(Bup[0, ind], infinity * dev[indI[ind + 1]])
|
|
Blo[0, ind] = np.maximum(Blo[0, ind], -infinity * dev[indI[ind + 1]])
|
|
val, err, terr = rind(Sc, m, Blo, Bup, indI, xc, nt=0)
|
|
assert_array_almost_equal(val, 0.05494076)
|
|
assert(err < 0.001)
|
|
assert_array_almost_equal(terr, 1.00000000e-10)
|
|
|
|
# Compute expectation E( X1^{+}*X2^{+} ) with random
|
|
# correlation coefficient,Cov(X1,X2) = rho2.
|
|
m2 = [0, 0]
|
|
rho2 = 0.3 # np.random.rand(1)
|
|
Sc2 = [[1, rho2], [rho2, 1]]
|
|
Blo2 = 0
|
|
Bup2 = np.inf
|
|
indI2 = [-1, 1]
|
|
rind2 = Rind(method=1)
|
|
g2 = lambda x: (
|
|
x * (np.pi / 2 + np.arcsin(x)) + np.sqrt(1 - x**2)) / (2 * np.pi)
|
|
assert_array_almost_equal(g2(rho2), 0.24137214191774381) # exact value
|
|
|
|
E3, err3, terr3 = rind(Sc2, m2, Blo2, Bup2, indI2, nt=0)
|
|
assert_array_almost_equal(E3, 0.24127499)
|
|
assert_array_almost_equal(err3, 0.00013838)
|
|
assert_array_almost_equal(terr3, 1.00000000e-10)
|
|
|
|
E4, err4, terr4 = rind2(Sc2,m2,Blo2,Bup2,indI2,nt=0)
|
|
assert_array_almost_equal(E4, 0.24127499)
|
|
assert_array_almost_equal(err4, 0.00013838)
|
|
assert_array_almost_equal(terr4, 1.00000000e-10)
|
|
#
|
|
# >>> E5, err5, terr5 = rind2(Sc2,m2,Blo2,Bup2,indI2,nt=0,abseps=1e-4)
|
|
# array([ 0.24127499])
|
|
# array([ 0.00013838])
|
|
# array([ 1.00000000e-10])
|
|
|
|
|
|
def test_prbnormtndpc():
|
|
'''
|
|
>>> rho2 = np.random.rand(2)
|
|
>>> a2 = np.zeros(2)
|
|
>>> b2 = np.repeat(np.inf,2)
|
|
>>> [val2,err2, ift2] = prbnormtndpc(rho2,a2,b2)
|
|
>>> g2 = lambda x : 0.25+np.arcsin(x[0]*x[1])/(2*pi)
|
|
>>> E2 = g2(rho2) #% exact value
|
|
>>> np.abs(E2-val2)<err2
|
|
True
|
|
|
|
>>> rho3 = np.random.rand(3)
|
|
>>> a3 = np.zeros(3)
|
|
>>> b3 = np.repeat(inf,3)
|
|
>>> [val3,err3, ift3] = prbnormtndpc(rho3,a3,b3)
|
|
>>> g3 = lambda x : 0.5-sum(np.sort(np.arccos([x[0]*x[1],x[0]*x[2],x[1]*x[2]])))/(4*pi)
|
|
>>> E3 = g3(rho3) # Exact value
|
|
>>> np.abs(E3-val3)<err3
|
|
True
|
|
'''
|
|
|
|
|
|
def test_prbnormndpc():
|
|
'''
|
|
>>> rho2 = np.random.rand(2)
|
|
>>> a2 = np.zeros(2);
|
|
>>> b2 = np.repeat(np.inf,2)
|
|
>>> [val2,err2, ift2] = prbnormndpc(rho2,a2,b2)
|
|
>>> g2 = lambda x : 0.25+np.arcsin(x[0]*x[1])/(2*pi)
|
|
>>> E2 = g2(rho2) #% exact value
|
|
>>> np.abs(E2-val2)<err2
|
|
True
|
|
|
|
>>> rho3 = np.random.rand(3)
|
|
>>> a3 = np.zeros(3)
|
|
>>> b3 = np.repeat(inf,3)
|
|
>>> [val3,err3, ift3] = prbnormndpc(rho3,a3,b3)
|
|
>>> g3 = lambda x : 0.5-sum(np.sort(np.arccos([x[0]*x[1],x[0]*x[2],x[1]*x[2]])))/(4*pi)
|
|
>>> E3 = g3(rho3) # Exact value
|
|
>>> np.abs(E3-val3)<err2
|
|
True
|
|
'''
|
|
|
|
|
|
def test_prbnormnd():
|
|
'''
|
|
>>> import numpy as np
|
|
>>> Et = 0.001946 # # exact prob.
|
|
>>> n = 5
|
|
>>> Blo =-np.inf; Bup=-1.2
|
|
>>> m = np.zeros(n); rho = 0.3;
|
|
>>> Sc =(np.ones((n,n))-np.eye(n))*rho+np.eye(n)
|
|
>>> A = np.repeat(Blo,n)
|
|
>>> B = np.repeat(Bup,n)-m
|
|
>>> [val,err,inform] = prbnormnd(Sc,A,B)
|
|
>>> np.abs(val-Et)< err
|
|
True
|
|
>>> 'val = %2.5f' % val
|
|
'val = 0.00195'
|
|
'''
|
|
|
|
|
|
def test_cdfnorm2d():
|
|
'''
|
|
>>> x = np.linspace(-3,3,3)
|
|
>>> [b1,b2] = np.meshgrid(x,x)
|
|
>>> r = 0.3
|
|
>>> cdfnorm2d(b1,b2,r)
|
|
array([[ 2.38515157e-05, 1.14504149e-03, 1.34987703e-03],
|
|
[ 1.14504149e-03, 2.98493342e-01, 4.99795143e-01],
|
|
[ 1.34987703e-03, 4.99795143e-01, 9.97324055e-01]])
|
|
'''
|
|
|
|
|
|
def test_prbnorm2d():
|
|
'''
|
|
>>> a = [-1, -2]
|
|
>>> b = [1, 1]
|
|
>>> r = 0.3
|
|
>>> prbnorm2d(a,b,r)
|
|
array([ 0.56659121])
|
|
'''
|
|
if __name__ == '__main__':
|
|
import doctest
|
|
doctest.testmod()
|