You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

489 lines
13 KiB
Python

import numpy as np
from scipy.sparse.linalg import expm
from scipy.signal import medfilt
from wafo.plotbackend import plotbackend as plt
from wafo.sg_filter import (SavitzkyGolay, smoothn, Kalman, HodrickPrescott,
HampelFilter)
def demo_savitzky_on_noisy_chirp():
"""
Example
-------
>>> demo_savitzky_on_noisy_chirp()
>>> plt.close()
"""
plt.figure(figsize=(7, 12))
# generate chirp signal
tvec = np.arange(0, 6.28, .02)
true_signal = np.sin(tvec * (2.0 + tvec))
true_d_signal = (2+tvec) * np.cos(tvec * (2.0 + tvec))
# add noise to signal
noise = np.random.normal(size=true_signal.shape)
signal = true_signal + .15 * noise
# plot signal
plt.subplot(311)
plt.plot(signal)
plt.title('signal')
# smooth and plot signal
plt.subplot(312)
savgol = SavitzkyGolay(n=8, degree=4)
s_signal = savgol.smooth(signal)
s2 = smoothn(signal, robust=True)
plt.plot(s_signal)
plt.plot(s2)
plt.plot(true_signal, 'r--')
plt.title('smoothed signal')
# smooth derivative of signal and plot it
plt.subplot(313)
savgol1 = SavitzkyGolay(n=8, degree=1, diff_order=1)
dt = tvec[1]-tvec[0]
d_signal = savgol1.smooth(signal) / dt
plt.plot(d_signal)
plt.plot(true_d_signal, 'r--')
plt.title('smoothed derivative of signal')
def demo_kalman_voltimeter():
"""
Example
-------
>>> demo_kalman_voltimeter()
>>> plt.close()
"""
V0 = 12
h = np.atleast_2d(1) # voltimeter measure the voltage itself
q = 1e-9 # variance of process noise as the car operates
r = 0.05 ** 2 # variance of measurement error
b = 0 # no system input
u = 0 # no system input
filt = Kalman(R=r, A=1, Q=q, H=h, B=b)
# Generate random voltages and watch the filter operate.
n = 50
truth = np.random.randn(n) * np.sqrt(q) + V0
z = truth + np.random.randn(n) * np.sqrt(r) # measurement
x = np.zeros(n)
for i, zi in enumerate(z):
x[i] = filt(zi, u) # perform a Kalman filter iteration
_hz = plt.plot(z, 'r.', label='observations')
# a-posteriori state estimates:
_hx = plt.plot(x, 'b-', label='Kalman output')
_ht = plt.plot(truth, 'g-', label='true voltage')
plt.legend()
plt.title('Automobile Voltimeter Example')
def lti_disc(F, L=None, Q=None, dt=1):
"""LTI_DISC Discretize LTI ODE with Gaussian Noise.
Syntax:
[A,Q] = lti_disc(F,L,Qc,dt)
In:
F - NxN Feedback matrix
L - NxL Noise effect matrix (optional, default identity)
Qc - LxL Diagonal Spectral Density (optional, default zeros)
dt - Time Step (optional, default 1)
Out:
A - Transition matrix
Q - Discrete Process Covariance
Description:
Discretize LTI ODE with Gaussian Noise. The original
ODE model is in form
dx/dt = F x + L w, w ~ N(0,Qc)
Result of discretization is the model
x[k] = A x[k-1] + q, q ~ N(0,Q)
Which can be used for integrating the model
exactly over time steps, which are multiples
of dt.
"""
n = np.shape(F)[0]
if L is None:
L = np.eye(n)
if Q is None:
Q = np.zeros((n, n))
# Closed form integration of transition matrix
A = expm(F * dt)
# Closed form integration of covariance
# by matrix fraction decomposition
Phi = np.vstack((np.hstack((F, np.dot(np.dot(L, Q), L.T))),
np.hstack((np.zeros((n, n)), -F.T))))
AB = np.dot(expm(Phi * dt), np.vstack((np.zeros((n, n)), np.eye(n))))
# Q = AB[:n, :] / AB[n:(2 * n), :]
Q = np.linalg.solve(AB[n:(2 * n), :].T, AB[:n, :].T)
return A, Q
def demo_kalman_sine():
"""Kalman Filter demonstration with sine signal.
Example
-------
>>> demo_kalman_sine()
>>> plt.close()
"""
sd = 0.5
dt = 0.1
w = 1
T = np.arange(0, 30 + dt / 2, dt)
n = len(T)
X = 3*np.sin(w * T)
Y = X + sd * np.random.randn(n)
''' Initialize KF to values
x = 0
dx/dt = 0
with great uncertainty in derivative
'''
M = np.zeros((2, 1))
P = np.diag([0.1, 2])
R = sd ** 2
H = np.atleast_2d([1, 0])
q = 0.1
F = np.atleast_2d([[0, 1],
[0, 0]])
A, Q = lti_disc(F, L=None, Q=np.diag([0, q]), dt=dt)
# Track and animate
m = M.shape[0]
_MM = np.zeros((m, n))
_PP = np.zeros((m, m, n))
'''In this demonstration we estimate a stationary sine signal from noisy
measurements by using the classical Kalman filter.'
'''
filt = Kalman(R=R, x=M, P=P, A=A, Q=Q, H=H, B=0)
# Generate random voltages and watch the filter operate.
# n = 50
# truth = np.random.randn(n) * np.sqrt(q) + V0
# z = truth + np.random.randn(n) * np.sqrt(r) # measurement
truth = X
z = Y
x = np.zeros((n, m))
for i, zi in enumerate(z):
x[i] = np.ravel(filt(zi, u=0))
_hz = plt.plot(z, 'r.', label='observations')
# a-posteriori state estimates:
_hx = plt.plot(x[:, 0], 'b-', label='Kalman output')
_ht = plt.plot(truth, 'g-', label='true voltage')
plt.legend()
plt.title('Automobile Voltimeter Example')
plt.show('hold')
# for k in range(m):
# [M,P] = kf_predict(M,P,A,Q);
# [M,P] = kf_update(M,P,Y(k),H,R);
#
# MM(:,k) = M;
# PP(:,:,k) = P;
#
# %
# % Animate
# %
# if rem(k,10)==1
# plot(T,X,'b--',...
# T,Y,'ro',...
# T(k),M(1),'k*',...
# T(1:k),MM(1,1:k),'k-');
# legend('Real signal','Measurements','Latest estimate',
# 'Filtered estimate')
# title('Estimating a noisy sine signal with Kalman filter.');
# drawnow;
#
# pause;
# end
# end
#
# clc;
# disp('In this demonstration we estimate a stationary sine signal '
# 'from noisy measurements by using the classical Kalman filter.');
# disp(' ');
# disp('The filtering results are now displayed sequantially for 10 time '
# 'step at a time.');
# disp(' ');
# disp('<push any key to see the filtered and smoothed results together>')
# pause;
# %
# % Apply Kalman smoother
# %
# SM = rts_smooth(MM,PP,A,Q);
# plot(T,X,'b--',...
# T,MM(1,:),'k-',...
# T,SM(1,:),'r-');
# legend('Real signal','Filtered estimate','Smoothed estimate')
# title('Filtered and smoothed estimate of the original signal');
#
# clc;
# disp('The filtered and smoothed estimates of the signal are now '
# 'displayed.')
# disp(' ');
# disp('RMS errors:');
# %
# % Errors
# %
# fprintf('KF = %.3f\nRTS = %.3f\n',...
# sqrt(mean((MM(1,:)-X(1,:)).^2)),...
# sqrt(mean((SM(1,:)-X(1,:)).^2)));
def demo_hampel():
"""
Example
-------
>>> demo_hampel()
>>> plt.close()
"""
randint = np.random.randint
Y = 5000 + np.random.randn(1000)
outliers = randint(0, 1000, size=(10,))
Y[outliers] = Y[outliers] + randint(1000, size=(10,))
YY, res = HampelFilter(dx=3, t=3, fulloutput=True)(Y)
YY1, res1 = HampelFilter(dx=1, t=3, adaptive=0.1, fulloutput=True)(Y)
YY2, res2 = HampelFilter(dx=3, t=0, fulloutput=True)(Y) # median
plt.figure(1)
plot_hampel(Y, YY, res)
plt.title('Standard HampelFilter')
plt.figure(2)
plot_hampel(Y, YY1, res1)
plt.title('Adaptive HampelFilter')
plt.figure(3)
plot_hampel(Y, YY2, res2)
plt.title('Median filter')
def plot_hampel(Y, YY, res):
X = np.arange(len(YY))
plt.plot(X, Y, 'b.') # Original Data
plt.plot(X, YY, 'r') # Hampel Filtered Data
plt.plot(X, res['Y0'], 'b--') # Nominal Data
plt.plot(X, res['LB'], 'r--') # Lower Bounds on Hampel Filter
plt.plot(X, res['UB'], 'r--') # Upper Bounds on Hampel Filter
i = res['outliers']
plt.plot(X[i], Y[i], 'ks') # Identified Outliers
def demo_tide_filter():
"""
Example
-------
>>> demo_tide_filter()
>>> plt.close()
"""
# import statsmodels.api as sa
import wafo.spectrum.models as sm
sd = 10
Sj = sm.Jonswap(Hm0=4.*sd)
S = Sj.tospecdata()
q = (0.1 * sd) ** 2 # variance of process noise s the car operates
r = (100 * sd) ** 2 # variance of measurement error
b = 0 # no system input
u = 0 # no system input
from scipy.signal import butter, filtfilt, lfilter_zi # lfilter,
freq_tide = 1. / (12 * 60 * 60)
freq_wave = 1. / 10
freq_filt = freq_wave / 10
dt = 1.
freq = 1. / dt
fn = (freq / 2)
P = 10 * np.diag([1, 0.01])
R = r
H = np.atleast_2d([1, 0])
F = np.atleast_2d([[0, 1],
[0, 0]])
A, Q = lti_disc(F, L=None, Q=np.diag([0, q]), dt=dt)
t = np.arange(0, 60 * 12, 1. / freq)
w = 2 * np.pi * freq # 1 Hz
tide = 100 * np.sin(freq_tide * w * t + 2 * np.pi / 4) + 100
y = tide + S.sim(len(t), dt=1. / freq)[:, 1].ravel()
# lowess = sa.nonparametric.lowess
# y2 = lowess(y, t, frac=0.5)[:,1]
filt = Kalman(R=R, x=np.array([[tide[0]], [0]]), P=P, A=A, Q=Q, H=H, B=b)
filt2 = Kalman(R=R, x=np.array([[tide[0]], [0]]), P=P, A=A, Q=Q, H=H, B=b)
# y = tide + 0.5 * np.sin(freq_wave * w * t)
# Butterworth filter
b, a = butter(9, (freq_filt / fn), btype='low')
# y2 = [lowess(y[max(i-60,0):i + 1], t[max(i-60,0):i + 1], frac=.3)[-1,1]
# for i in range(len(y))]
# y2 = [lfilter(b, a, y[:i + 1])[i] for i in range(len(y))]
# y3 = filtfilt(b, a, y[:16]).tolist() + [filtfilt(b, a, y[:i + 1])[i]
# for i in range(16, len(y))]
# y0 = medfilt(y, 41)
_zi = lfilter_zi(b, a)
# y2 = lfilter(b, a, y)#, zi=y[0]*zi) # standard filter
y3 = filtfilt(b, a, y) # filter with phase shift correction
y4 = []
y5 = []
for _i, j in enumerate(y):
tmp = np.ravel(filt(j, u=u))
tmp = np.ravel(filt2(tmp[0], u=u))
# if i==0:
# print(filt.x)
# print(filt2.x)
y4.append(tmp[0])
y5.append(tmp[1])
_y0 = medfilt(y4, 41)
print(filt.P)
# plot
plt.plot(t, y, 'r.-', linewidth=2, label='raw data')
# plt.plot(t, y2, 'b.-', linewidth=2, label='lowess @ %g Hz' % freq_filt)
# plt.plot(t, y2, 'b.-', linewidth=2, label='filter @ %g Hz' % freq_filt)
plt.plot(t, y3, 'g.-', linewidth=2, label='filtfilt @ %g Hz' % freq_filt)
plt.plot(t, y4, 'k.-', linewidth=2, label='kalman')
# plt.plot(t, y5, 'k.', linewidth=2, label='kalman2')
plt.plot(t, tide, 'y-', linewidth=2, label='True tide')
plt.legend(frameon=False, fontsize=14)
plt.xlabel("Time [s]")
plt.ylabel("Amplitude")
def demo_savitzky_on_exponential():
"""
Example
-------
>>> demo_savitzky_on_exponential()
>>> plt.close()
"""
t = np.linspace(-4, 4, 500)
y = np.exp(-t ** 2) + np.random.normal(0, 0.05, np.shape(t))
n = 11
ysg = SavitzkyGolay(n, degree=1, diff_order=0)(y)
plt.plot(t, y, t, ysg, '--')
def demo_smoothn_on_1d_cos():
"""
Example
-------
>>> demo_smoothn_on_1d_cos()
>>> plt.close()
"""
x = np.linspace(0, 100, 2 ** 8)
y = np.cos(x / 10) + (x / 50) ** 2 + np.random.randn(np.size(x)) / 10
y[np.r_[70, 75, 80]] = np.array([5.5, 5, 6])
z = smoothn(y) # Regular smoothing
zr = smoothn(y, robust=True) # Robust smoothing
_h0 = plt.subplot(121),
_h = plt.plot(x, y, 'r.', x, z, 'k', linewidth=2)
plt.title('Regular smoothing')
plt.subplot(122)
plt.plot(x, y, 'r.', x, zr, 'k', linewidth=2)
plt.title('Robust smoothing')
def demo_smoothn_on_2d_exp_sin():
"""
Example
-------
>>> demo_smoothn_on_2d_exp_sin()
>>> plt.close()
"""
xp = np.arange(0, 1, 0.02) # np.r_[0:1:0.02]
[x, y] = np.meshgrid(xp, xp)
f = np.exp(x + y) + np.sin((x - 2 * y) * 3)
fn = f + np.random.randn(*f.shape) * 0.5
_fs, s = smoothn(fn, fulloutput=True)
fs2 = smoothn(fn, s=2 * s)
_h = plt.subplot(131),
_h = plt.contourf(xp, xp, fn)
_h = plt.subplot(132),
_h = plt.contourf(xp, xp, fs2)
_h = plt.subplot(133),
_h = plt.contourf(xp, xp, f)
def _cardioid(n=1000):
t = np.linspace(0, 2 * np.pi, n)
x0 = 2 * np.cos(t) * (1 - np.cos(t))
y0 = 2 * np.sin(t) * (1 - np.cos(t))
x = x0 + np.random.randn(x0.size) * 0.1
y = y0 + np.random.randn(y0.size) * 0.1
return x, y, x0, y0
def demo_smoothn_on_cardioid():
"""
Example
-------
>>> demo_smoothn_cardoid()
>>> plt.close()
"""
x, y, x0, y0 = _cardioid()
z = smoothn(x + 1j * y, robust=False)
plt.plot(x0, y0, 'y',
x, y, 'r.',
np.real(z), np.imag(z), 'k', linewidth=2)
def demo_hodrick_on_cardioid():
"""
Example
-------
>>> demo_hodrick_on_cardioid()
>>> plt.close()
"""
x, y, x0, y0 = _cardioid()
smooth = HodrickPrescott(w=20000)
# smooth = HampelFilter(adaptive=50)
xs, ys = smooth(x), smooth(y)
plt.plot(x0, y0, 'y',
x, y, 'r.',
xs, ys, 'k', linewidth=2)
if __name__ == '__main__':
from wafo.testing import test_docstrings
test_docstrings(__file__)
# demo_savitzky_on_noisy_chirp()
# plt.show('hold') # show plot
# demo_kalman_sine()
# demo_tide_filter()
# demo_hampel()
# demo_kalman_voltimeter()
# demo_savitzky_on_exponential()
# plt.figure(1)
# demo_hodrick_on_cardioid()
# plt.figure(2)
# # demo_smoothn_on_1d_cos()
# demo_smoothn_on_cardioid()
# plt.show('hold')