You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2323 lines
66 KiB
Python
2323 lines
66 KiB
Python
"""
|
|
Extended functions to operate on polynomials
|
|
"""
|
|
# -------------------------------------------------------------------------
|
|
# Name: polynomial
|
|
# Purpose: Functions to operate on polynomials.
|
|
#
|
|
# Author: pab
|
|
# polyXXX functions are based on functions found in the matlab toolbox polyutil
|
|
# written by
|
|
# Author: Peter J. Acklam
|
|
# E-mail: pjacklam@online.no
|
|
# WWW URL: http://home.online.no/~pjacklam
|
|
#
|
|
# Created: 30.12.2008
|
|
# Copyright: (c) pab 2008
|
|
# Licence: LGPL
|
|
# -------------------------------------------------------------------------
|
|
# !/usr/bin/env python
|
|
from __future__ import absolute_import
|
|
import warnings # @UnusedImport
|
|
from numpy.polynomial import polyutils as pu
|
|
from .plotbackend import plotbackend as plt
|
|
import numpy as np
|
|
from numpy import (zeros, asarray, newaxis, arange,
|
|
logical_or, any, pi, cos, round, diff, all, exp,
|
|
where, extract, linalg, sign, concatenate, floor,
|
|
linspace, sum, meshgrid)
|
|
|
|
from scipy.fftpack import dct, idct as _idct
|
|
from numpy.lib.polynomial import * # @UnusedWildImport
|
|
from scipy.misc.common import pade # @UnresolvedImport
|
|
__all__ = np.lib.polynomial.__all__
|
|
__all__ = __all__ + ['pade', 'padefit', 'polyreloc', 'polyrescl', 'polytrim',
|
|
'poly2hstr', 'poly2str', 'polyshift', 'polyishift',
|
|
'map_from_intervall', 'map_to_intervall', 'cheb2poly',
|
|
'chebextr', 'chebroot', 'chebpoly', 'chebfit', 'chebval',
|
|
'chebder', 'chebint', 'Cheb1d', 'dct', 'idct']
|
|
|
|
|
|
def polyint(p, m=1, k=None):
|
|
"""
|
|
Return an antiderivative (indefinite integral) of a polynomial.
|
|
|
|
The returned order `m` antiderivative `P` of polynomial `p` satisfies
|
|
:math:`\\frac{d^m}{dx^m}P(x) = p(x)` and is defined up to `m - 1`
|
|
integration constants `k`. The constants determine the low-order
|
|
polynomial part
|
|
|
|
.. math:: \\frac{k_{m-1}}{0!} x^0 + \\ldots + \\frac{k_0}{(m-1)!}x^{m-1}
|
|
|
|
of `P` so that :math:`P^{(j)}(0) = k_{m-j-1}`.
|
|
|
|
Parameters
|
|
----------
|
|
p : {array_like, poly1d}
|
|
Polynomial to differentiate.
|
|
A sequence is interpreted as polynomial coefficients, see `poly1d`.
|
|
m : int, optional
|
|
Order of the antiderivative. (Default: 1)
|
|
k : {None, list of `m` scalars, scalar}, optional
|
|
Integration constants. They are given in the order of integration:
|
|
those corresponding to highest-order terms come first.
|
|
|
|
If ``None`` (default), all constants are assumed to be zero.
|
|
If `m = 1`, a single scalar can be given instead of a list.
|
|
|
|
See Also
|
|
--------
|
|
polyder : derivative of a polynomial
|
|
poly1d.integ : equivalent method
|
|
|
|
Examples
|
|
--------
|
|
The defining property of the antiderivative:
|
|
|
|
>>> p = np.poly1d([1,1,1])
|
|
>>> P = np.polyint(p)
|
|
>>> P
|
|
poly1d([ 0.33333333, 0.5 , 1. , 0. ])
|
|
>>> np.polyder(P) == p
|
|
True
|
|
|
|
The integration constants default to zero, but can be specified:
|
|
|
|
>>> P = np.polyint(p, 3)
|
|
>>> P(0)
|
|
0.0
|
|
>>> np.polyder(P)(0)
|
|
0.0
|
|
>>> np.polyder(P, 2)(0)
|
|
0.0
|
|
>>> P = np.polyint(p, 3, k=[6, 5, 3])
|
|
>>> P.coefficients.tolist()
|
|
[0.016666666666666666, 0.041666666666666664, 0.16666666666666666, 3.0,
|
|
5.0, 3.0]
|
|
|
|
Note that 3 = 6 / 2!, and that the constants are given in the order of
|
|
integrations. Constant of the highest-order polynomial term comes first:
|
|
|
|
>>> np.polyder(P, 2)(0)
|
|
6.0
|
|
>>> np.polyder(P, 1)(0)
|
|
5.0
|
|
>>> P(0)
|
|
3.0
|
|
|
|
"""
|
|
m = int(m)
|
|
if m < 0:
|
|
raise ValueError("Order of integral must be positive (see polyder)")
|
|
if k is None:
|
|
k = zeros(m, float)
|
|
k = np.atleast_1d(k)
|
|
if len(k) == 1 and m > 1:
|
|
k = k[0] * np.ones(m, float)
|
|
if len(k) < m:
|
|
raise ValueError(
|
|
"k must be a scalar or a rank-1 array of length 1 or >m.")
|
|
truepoly = isinstance(p, poly1d)
|
|
p = asarray(p)
|
|
if m == 0:
|
|
if truepoly:
|
|
return poly1d(p)
|
|
return p
|
|
else:
|
|
ix = arange(len(p), 0, -1)
|
|
if p.ndim > 1:
|
|
ix = ix[..., newaxis]
|
|
pieces = p.shape[-1]
|
|
k0 = k[0] * np.ones((1, pieces), dtype=int)
|
|
else:
|
|
k0 = [k[0]]
|
|
y = np.concatenate((p.__truediv__(ix), k0), axis=0)
|
|
|
|
val = polyint(y, m - 1, k=k[1:])
|
|
if truepoly:
|
|
return poly1d(val)
|
|
return val
|
|
|
|
|
|
def polyder(p, m=1):
|
|
"""
|
|
Return the derivative of the specified order of a polynomial.
|
|
|
|
Parameters
|
|
----------
|
|
p : poly1d or sequence
|
|
Polynomial to differentiate.
|
|
A sequence is interpreted as polynomial coefficients, see `poly1d`.
|
|
m : int, optional
|
|
Order of differentiation (default: 1)
|
|
|
|
Returns
|
|
-------
|
|
der : poly1d
|
|
A new polynomial representing the derivative.
|
|
|
|
See Also
|
|
--------
|
|
polyint : Anti-derivative of a polynomial.
|
|
poly1d : Class for one-dimensional polynomials.
|
|
|
|
Examples
|
|
--------
|
|
The derivative of the polynomial :math:`x^3 + x^2 + x^1 + 1` is:
|
|
|
|
>>> p = np.poly1d([1,1,1,1])
|
|
>>> p2 = np.polyder(p)
|
|
>>> p2
|
|
poly1d([3, 2, 1])
|
|
|
|
which evaluates to:
|
|
|
|
>>> p2(2.)
|
|
17.0
|
|
|
|
We can verify this, approximating the derivative with
|
|
``(f(x + h) - f(x))/h``:
|
|
|
|
>>> (p(2. + 0.001) - p(2.)) / 0.001
|
|
17.007000999997857
|
|
|
|
The fourth-order derivative of a 3rd-order polynomial is zero:
|
|
|
|
>>> np.polyder(p, 2)
|
|
poly1d([6, 2])
|
|
>>> np.polyder(p, 3)
|
|
poly1d([6])
|
|
>>> np.polyder(p, 4)
|
|
poly1d([ 0.])
|
|
|
|
"""
|
|
m = int(m)
|
|
if m < 0:
|
|
raise ValueError("Order of derivative must be positive (see polyint)")
|
|
truepoly = isinstance(p, poly1d)
|
|
p = asarray(p)
|
|
if m == 0:
|
|
if truepoly:
|
|
return poly1d(p)
|
|
return p
|
|
else:
|
|
n = len(p) - 1
|
|
ix = arange(n, 0, -1)
|
|
if p.ndim > 1:
|
|
ix = ix[..., newaxis]
|
|
y = ix * p[:-1]
|
|
val = polyder(y, m - 1)
|
|
if truepoly:
|
|
return poly1d(val)
|
|
return val
|
|
|
|
|
|
def polydeg(x, y):
|
|
'''
|
|
Return optimal degree for polynomial fitting
|
|
|
|
|
|
N = POLYDEG(X,Y) finds the optimal degree for polynomial fitting,
|
|
according to the Akaike's information criterion.
|
|
|
|
Assuming that you want to find the degree N of a polynomial that fits
|
|
the data Y(X) best in a least-squares sense, the Akaike's information
|
|
criterion is defined by:
|
|
2*(N + 1) + n * (log(2 * pi * RSS / n) + 1)
|
|
where n is the number of points and RSS is the residual sum of squares.
|
|
The optimal degree N is defined here as that which minimizes AIC:
|
|
http://en.wikipedia.org/wiki/Akaike_Information_Criterion
|
|
|
|
Notes:
|
|
-----
|
|
If the number of data is small, POLYDEG may tend to return:
|
|
N = (number of points)-1.
|
|
|
|
ORTHOFIT is more appropriate than POLYFIT for polynomial fitting with
|
|
relatively high degrees.
|
|
|
|
Example:
|
|
-------
|
|
>>> x = np.linspace(0,10,300)
|
|
>>> y = np.sin(x ** 3 / 100) ** 2 + 0.05 * np.random.randn(x.size)
|
|
>>> n = polydeg(x,y)
|
|
>>> n
|
|
21
|
|
|
|
ys = orthofit(x,y,n);
|
|
plt.plot(x, y, '.', x, ys, 'k')
|
|
|
|
See also
|
|
--------
|
|
polyfit, orthofit
|
|
'''
|
|
x, y = np.atleast_1d(x, y)
|
|
x = x.ravel()
|
|
y = y.ravel()
|
|
N = len(x)
|
|
|
|
# Search the optimal degree minimizing the Akaike's information criterion
|
|
# y(x) are fitted in a least-squares sense using a polynomial of degree n
|
|
# developed in a series of orthogonal polynomials.
|
|
ys = np.ones((N,)) * y.mean()
|
|
# correction for small sample sizes
|
|
logsum2 = (np.log(2 * pi * ((ys - y) ** 2).sum() / N) + 1)
|
|
AIC = 2 + N * logsum2 + 4 / (N - 2)
|
|
|
|
n = 1
|
|
nit = 0
|
|
|
|
# While-loop is stopped when a minimum is detected. 3 more steps are
|
|
# required to take AIC noise into account and to ensure that this minimum
|
|
# is a (likely) global minimum.
|
|
|
|
while nit < 3:
|
|
p = orthofit(x, y, n)
|
|
ys = orthoval(p, x)
|
|
# -- Akaike's Information Criterion
|
|
aic = (2 * (n + 1) * (1 + (n + 2) / (N - n - 2)) +
|
|
N * (np.log(2 * pi * sum((ys - y) ** 2) / N) + 1))
|
|
|
|
if aic >= AIC:
|
|
nit += 1
|
|
else:
|
|
nit = 0
|
|
AIC = aic
|
|
|
|
n = n + 1
|
|
|
|
if n >= N:
|
|
break
|
|
n = n - nit - 1
|
|
return n
|
|
|
|
|
|
def orthoval(p, x):
|
|
'''
|
|
Evaluation of orthogonal polynomial
|
|
|
|
Parameters
|
|
----------
|
|
p : array_like
|
|
2D array of polynomial coefficients (including coefficients equal
|
|
to zero) from highest degree to the constant term.
|
|
x : array_like
|
|
A number or a 1D array of numbers "at" which to evaluate `p`.
|
|
|
|
Returns
|
|
-------
|
|
values : ndarray
|
|
|
|
See Also
|
|
--------
|
|
orthofit
|
|
'''
|
|
p = np.atleast_2d(p)
|
|
n = p.shape[1] - 1
|
|
xi = np.atleast_1d(x)
|
|
shape0 = xi.shape
|
|
if n == 0:
|
|
return np.ones(shape0) * p[0]
|
|
xi = xi.ravel()
|
|
xn = np.ones((n + 1, len(xi)))
|
|
xn[1] = xi - p[1, 1]
|
|
for i in range(2, n + 1):
|
|
xn[i, :] = (xi - p[1, i]) * xn[i - 1, :] - p[2, i] * xn[i - 2, :]
|
|
ys = np.dot(p[0], xn)
|
|
return ys.reshape(shape0)
|
|
|
|
|
|
def ortho2poly(p):
|
|
"""
|
|
Converts orthogonal polynomial to ordinary polynomial coefficients
|
|
|
|
Parameters
|
|
----------
|
|
p : array-like
|
|
orthogonal polynomial coefficients
|
|
|
|
Returns
|
|
-------
|
|
p : ndarray
|
|
ordinary polynomial coefficients
|
|
|
|
It is not advised to do this for p.shape[1]>10 due to numerical
|
|
cancellations.
|
|
|
|
See also
|
|
--------
|
|
orthoval
|
|
orthofit
|
|
|
|
Examples
|
|
--------
|
|
>>> import numpy as np
|
|
>>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
|
|
>>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
|
|
>>> p = orthofit(x, y, 3)
|
|
>>> p
|
|
array([[ 0. , -0.30285714, -0.16071429, 0.08703704],
|
|
[ 0. , 2.5 , 2.5 , 2.5 ],
|
|
[ 0. , 0. , 2.91666667, 2.13333333]])
|
|
>>> ortho2poly(p)
|
|
array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254])
|
|
>>> np.polyfit(x, y, 3)
|
|
array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254])
|
|
|
|
References
|
|
----------
|
|
"""
|
|
p = np.atleast_2d(p)
|
|
n = p.shape[1] - 1
|
|
if n == 0:
|
|
return p[0]
|
|
x = [1, ] * (n + 1)
|
|
x[1] = np.array([1, - p[1, 1]])
|
|
for i in range(2, n + 1):
|
|
x[i] = polyadd(polymul([1, - p[1, i]], x[i - 1]), - p[2, i] * x[i - 2])
|
|
for i in range(n + 1):
|
|
x[i] *= p[0, i]
|
|
return reduce(polyadd, x)
|
|
|
|
|
|
def orthofit(x, y, n):
|
|
'''
|
|
Fit orthogonal polynomial to data.
|
|
|
|
Parameters
|
|
---------
|
|
x, y : arrays
|
|
data Y(X) to fit to a polynomial.
|
|
n : integer
|
|
degree of fitted polynomial.
|
|
|
|
Returns
|
|
-------
|
|
p : array
|
|
orthogonal polynomial
|
|
|
|
Notes:
|
|
-----
|
|
Orthofit smooths/fits data using a polynomial of degree N developed in
|
|
a sequence of orthogonal polynomials. ORTHOFIT is more appropriate than
|
|
polyfit for polynomial fitting and smoothing since this method does not
|
|
involve any matrix linear system but a simple recursive procedure.
|
|
Degrees much higher than 30 could be used with orthogonal polynomials,
|
|
whereas badly conditioned matrices may appear with a classical
|
|
polynomial fitting of degree typically higher than 10.
|
|
|
|
To avoid using unnecessarily high degrees, you may let the function
|
|
POLYDEG choose it for you. POLYDEG finds an optimal polynomial degree
|
|
according to the Akaike's information criterion.
|
|
|
|
Example:
|
|
-------
|
|
>>> x = np.linspace(0,10,300);
|
|
>>> y = np.sin(x**3/100)**2 + 0.05*np.random.randn(x.size)
|
|
>>> p = orthofit(x, y, 25)
|
|
>>> ys = orthoval(p, x)
|
|
|
|
plot(x, y,'.',x, ys, 'k')
|
|
|
|
See also
|
|
--------
|
|
polydeg, polyfit, polyval
|
|
|
|
Reference:
|
|
---------
|
|
Methodes de calcul numerique 2. JP Nougier. Hermes Science
|
|
Publications, 2001. Section 4.7 pp 116-121
|
|
'''
|
|
x, y = np.atleast_1d(x, y)
|
|
x = x.ravel()
|
|
y = y.ravel()
|
|
# Particular case: n=0
|
|
if n == 0:
|
|
return y.mean()
|
|
|
|
# p = Coefficients of the orthogonal polynomials
|
|
p = np.zeros((3, n + 1))
|
|
p[1, 1] = x.mean()
|
|
|
|
N = len(x)
|
|
PL = np.ones((n + 1, N))
|
|
PL[1] = x - p[1, 1]
|
|
|
|
for i in range(2, n + 1):
|
|
p[1, i] = np.dot(x, PL[i - 1] ** 2) / sum(PL[i - 1] ** 2)
|
|
p[2, i] = np.dot(x, PL[i - 2] * PL[i - 1]) / sum(PL[i - 2] ** 2)
|
|
PL[i] = (x - p[1, i]) * PL[i - 1] - p[2, i] * PL[i - 2]
|
|
p[0, :] = np.dot(PL, y) / sum(PL ** 2, axis=1)
|
|
return p
|
|
# ys = np.dot(p[0, :], PL) # smoothed y
|
|
|
|
|
|
def polyreloc(p, x, y=0.0):
|
|
"""
|
|
Relocate polynomial
|
|
|
|
The polynomial `p` is relocated by "moving" it `x`
|
|
units along the x-axis and `y` units along the y-axis.
|
|
So the polynomial `r` is relative to the point (x,y) as
|
|
the polynomial `p` is relative to the point (0,0).
|
|
|
|
Parameters
|
|
----------
|
|
p : array-like, poly1d
|
|
vector or matrix of column vectors of polynomial coefficients to
|
|
relocate. (Polynomial coefficients are in decreasing order.)
|
|
x : scalar
|
|
distance to relocate P along x-axis
|
|
y : scalar
|
|
distance to relocate P along y-axis (default 0)
|
|
|
|
Returns
|
|
-------
|
|
r : ndarray, poly1d
|
|
vector/matrix/poly1d of relocated polynomial coefficients.
|
|
|
|
See also
|
|
--------
|
|
polyrescl
|
|
|
|
Example
|
|
-------
|
|
>>> import numpy as np
|
|
>>> p = np.arange(6); p.shape = (2,-1)
|
|
>>> np.polyval(p,0)
|
|
array([3, 4, 5])
|
|
>>> np.polyval(p,1)
|
|
array([3, 5, 7])
|
|
>>> r = polyreloc(p,-1) # move to the left along x-axis
|
|
>>> np.polyval(r,-1) # = polyval(p,0)
|
|
array([3, 4, 5])
|
|
>>> np.polyval(r,0) # = polyval(p,1)
|
|
array([3, 5, 7])
|
|
"""
|
|
|
|
truepoly = isinstance(p, poly1d)
|
|
r = np.atleast_1d(p).copy()
|
|
n = r.shape[0]
|
|
|
|
# Relocate polynomial using Horner's algorithm
|
|
for ii in range(n, 1, -1):
|
|
for i in range(1, ii):
|
|
r[i] = r[i] - x * r[i - 1]
|
|
r[-1] = r[-1] + y
|
|
if r.ndim > 1 and r.shape[-1] == 1:
|
|
r.shape = (r.size,)
|
|
if truepoly:
|
|
r = poly1d(r)
|
|
return r
|
|
|
|
|
|
def polyrescl(p, x, y=1.0):
|
|
"""
|
|
Rescale polynomial.
|
|
|
|
Parameters
|
|
----------
|
|
p : array-like, poly1d
|
|
vector or matrix of column vectors of polynomial coefficients to
|
|
rescale. (Polynomial coefficients are in decreasing order.)
|
|
x,y : scalars
|
|
defining the factors to rescale the polynomial `p` in
|
|
x-direction and y-direction, respectively.
|
|
|
|
Returns
|
|
-------
|
|
r : ndarray, poly1d
|
|
vector/matrix/poly1d of rescaled polynomial coefficients.
|
|
|
|
See also
|
|
--------
|
|
polyreloc
|
|
|
|
Example
|
|
-------
|
|
>>> import numpy as np
|
|
>>> p = np.arange(6); p.shape = (2,-1)
|
|
>>> np.polyval(p,0)
|
|
array([3, 4, 5])
|
|
>>> np.polyval(p,1)
|
|
array([3, 5, 7])
|
|
>>> r = polyrescl(p,2) # scale by 2 along x-axis
|
|
>>> np.polyval(r,0) # = polyval(p,0)
|
|
array([ 3., 4., 5.])
|
|
>>> np.polyval(r,2) # = polyval(p,1)
|
|
array([ 3., 5., 7.])
|
|
"""
|
|
|
|
truepoly = isinstance(p, poly1d)
|
|
r = np.atleast_1d(p)
|
|
n = r.shape[0]
|
|
|
|
xscale = (float(x) ** arange(1 - n, 1))
|
|
if r.ndim == 1:
|
|
q = y * r * xscale
|
|
else:
|
|
q = y * r * xscale[:, newaxis]
|
|
if truepoly:
|
|
q = poly1d(q)
|
|
return q
|
|
|
|
|
|
def polytrim(p):
|
|
"""
|
|
Trim polynomial by stripping off leading zeros.
|
|
|
|
Parameters
|
|
----------
|
|
p : array-like, poly1d
|
|
vector or matrix of column vectors of polynomial coefficients in
|
|
decreasing order.
|
|
|
|
Returns
|
|
-------
|
|
r : ndarray, poly1d
|
|
vector/matrix/poly1d of trimmed polynomial coefficients.
|
|
|
|
Example
|
|
-------
|
|
>>> p = [0,1,2]
|
|
>>> polytrim(p)
|
|
array([1, 2])
|
|
>>> p1 = [[0,0],[1,2],[3,4]]
|
|
>>> polytrim(p1)
|
|
array([[1, 2],
|
|
[3, 4]])
|
|
"""
|
|
|
|
truepoly = isinstance(p, poly1d)
|
|
if truepoly:
|
|
return p
|
|
else:
|
|
r = np.atleast_1d(p).copy()
|
|
# Remove leading zeros
|
|
is_not_lead_zeros = logical_or.accumulate(r != 0, axis=0)
|
|
if r.ndim == 1:
|
|
r = r[is_not_lead_zeros]
|
|
else:
|
|
is_not_lead_zeros = any(is_not_lead_zeros, axis=1)
|
|
r = r[is_not_lead_zeros, :]
|
|
return r
|
|
|
|
|
|
def poly2hstr(p, variable='x'):
|
|
"""
|
|
Return polynomial as a Horner represented string.
|
|
|
|
Parameters
|
|
----------
|
|
p : array-like poly1d
|
|
vector of polynomial coefficients in decreasing order.
|
|
variable : string
|
|
display character for variable
|
|
|
|
Returns
|
|
-------
|
|
p_str : string
|
|
consisting of the polynomial coefficients in the vector P multiplied
|
|
by powers of the given `variable`.
|
|
|
|
Examples
|
|
--------
|
|
>>> poly2hstr([1, 1, 2], 's' )
|
|
'(s + 1)*s + 2'
|
|
|
|
See also
|
|
--------
|
|
poly2str
|
|
"""
|
|
var = variable
|
|
|
|
coefs = polytrim(np.atleast_1d(p))
|
|
order = len(coefs) - 1 # Order of polynomial.
|
|
s = '' # Initialize output string.
|
|
ix = 1
|
|
for expon in range(order, -1, -1):
|
|
coef = coefs[order - expon]
|
|
# There is no point in adding a zero term (except if it's the only
|
|
# term, but we'll take care of that later).
|
|
if coef == 0:
|
|
ix += 1
|
|
else:
|
|
# Append exponent if necessary.
|
|
if ix > 1:
|
|
exponstr = '%.0f' % ix
|
|
s = '%s**%s' % (s, exponstr)
|
|
ix = 1
|
|
# Is it the first term?
|
|
isfirst = s == ''
|
|
|
|
# We need the coefficient only if it is different from 1 or -1 or
|
|
# when it is the constant term.
|
|
needcoef = (
|
|
(abs(coef) != 1) | (
|
|
expon == 0) & isfirst) | 1 - isfirst
|
|
|
|
# We need the variable except in the constant term.
|
|
needvar = (expon != 0)
|
|
|
|
# Add sign, but we don't need a leading plus-sign.
|
|
if isfirst:
|
|
if coef < 0:
|
|
s = '-' # % Unary minus.
|
|
else:
|
|
if coef < 0:
|
|
s = '%s - ' % s # % Binary minus (subtraction).
|
|
else:
|
|
s = '%s + ' % s # % Binary plus (addition).
|
|
|
|
# Append the coefficient if it is different from one or when it is
|
|
# the constant term.
|
|
if needcoef:
|
|
coefstr = '%.20g' % abs(coef)
|
|
s = '%s%s' % (s, coefstr)
|
|
|
|
# Append variable if necessary.
|
|
if needvar:
|
|
# Append a multiplication sign if necessary.
|
|
if needcoef:
|
|
if 1 - isfirst:
|
|
s = '(%s)' % s
|
|
s = '%s*' % s
|
|
s = '%s%s' % (s, var)
|
|
|
|
# Now treat the special case where the polynomial is zero.
|
|
if s == '':
|
|
s = '0'
|
|
return s
|
|
|
|
|
|
def poly2str(p, variable='x'):
|
|
"""
|
|
Return polynomial as a string.
|
|
|
|
Parameters
|
|
----------
|
|
p : array-like poly1d
|
|
vector of polynomial coefficients in decreasing order.
|
|
variable : string
|
|
display character for variable
|
|
|
|
Returns
|
|
-------
|
|
p_str : string
|
|
consisting of the polynomial coefficients in the vector P multiplied
|
|
by powers of the given `variable`.
|
|
|
|
See also
|
|
--------
|
|
poly2hstr
|
|
|
|
Examples
|
|
--------
|
|
>>> poly2str([1, 1, 2], 's' )
|
|
's**2 + s + 2'
|
|
"""
|
|
thestr = "0"
|
|
var = variable
|
|
|
|
# Remove leading zeros
|
|
coeffs = polytrim(np.atleast_1d(p))
|
|
|
|
N = len(coeffs) - 1
|
|
|
|
for k in range(len(coeffs)):
|
|
coefstr = '%.4g' % abs(coeffs[k])
|
|
if coefstr[-4:] == '0000':
|
|
coefstr = coefstr[:-5]
|
|
power = (N - k)
|
|
if power == 0:
|
|
if coefstr != '0':
|
|
newstr = '%s' % (coefstr,)
|
|
else:
|
|
if k == 0:
|
|
newstr = '0'
|
|
else:
|
|
newstr = ''
|
|
elif power == 1:
|
|
if coefstr == '0':
|
|
newstr = ''
|
|
elif coefstr == 'b' or coefstr == '1':
|
|
newstr = var
|
|
else:
|
|
newstr = '%s*%s' % (coefstr, var)
|
|
else:
|
|
if coefstr == '0':
|
|
newstr = ''
|
|
elif coefstr == 'b' or coefstr == '1':
|
|
newstr = '%s**%d' % (var, power,)
|
|
else:
|
|
newstr = '%s*%s**%d' % (coefstr, var, power)
|
|
|
|
if k > 0:
|
|
if newstr != '':
|
|
if coeffs[k] < 0:
|
|
thestr = "%s - %s" % (thestr, newstr)
|
|
else:
|
|
thestr = "%s + %s" % (thestr, newstr)
|
|
elif (k == 0) and (newstr != '') and (coeffs[k] < 0):
|
|
thestr = "-%s" % (newstr,)
|
|
else:
|
|
thestr = newstr
|
|
return thestr
|
|
|
|
|
|
def polyshift(py, a=-1, b=1):
|
|
"""
|
|
Polynomial coefficient shift
|
|
|
|
Polyshift shift the polynomial coefficients by a variable shift:
|
|
|
|
Y = 2*(X-.5*(b+a))/(b-a)
|
|
|
|
i.e., the interval -1 <= Y <= 1 is mapped to the interval a <= X <= b
|
|
|
|
Parameters
|
|
----------
|
|
py : array-like
|
|
polynomial coefficients for the variable y.
|
|
a,b : scalars
|
|
lower and upper limit.
|
|
|
|
Returns
|
|
-------
|
|
px : ndarray
|
|
polynomial coefficients for the variable x.
|
|
|
|
See also
|
|
--------
|
|
polyishift
|
|
|
|
Example
|
|
-------
|
|
>>> py = [1, 0]
|
|
>>> px = polyshift(py,0,5)
|
|
>>> polyval(px,[0, 2.5, 5]) #% This is the same as the line below
|
|
array([-1., 0., 1.])
|
|
>>> polyval(py,[-1, 0, 1 ])
|
|
array([-1, 0, 1])
|
|
"""
|
|
|
|
if (a == -1) & (b == 1):
|
|
return py
|
|
L = b - a
|
|
return polyishift(py, -(2. + b + a) / L, (2. - b - a) / L)
|
|
|
|
|
|
def polyishift(px, a=-1, b=1):
|
|
"""
|
|
Inverse polynomial coefficient shift
|
|
|
|
Polyishift does the inverse of Polyshift,
|
|
shift the polynomial coefficients by a variable shift:
|
|
|
|
Y = 2*(X-.5*(b+a)/(b-a)
|
|
|
|
i.e., the interval a <= X <= b is mapped to the interval -1 <= Y <= 1
|
|
|
|
Parameters
|
|
----------
|
|
px : array-like
|
|
polynomial coefficients for the variable x.
|
|
a,b : scalars
|
|
lower and upper limit.
|
|
|
|
Returns
|
|
-------
|
|
py : ndarray
|
|
polynomial coefficients for the variable y.
|
|
|
|
See also
|
|
--------
|
|
polyishift
|
|
|
|
Example
|
|
-------
|
|
>>> px = [1, 0]
|
|
>>> py = polyishift(px,0,5);
|
|
>>> polyval(px,[0, 2.5, 5]) #% This is the same as the line below
|
|
array([ 0. , 2.5, 5. ])
|
|
>>> polyval(py,[-1, 0, 1])
|
|
array([ 0. , 2.5, 5. ])
|
|
"""
|
|
if (a == -1) & (b == 1):
|
|
return px
|
|
L = b - a
|
|
xscale = 2. / L
|
|
xloc = -float(a + b) / L
|
|
return polyreloc(polyrescl(px, xscale), xloc)
|
|
|
|
|
|
def map_from_interval(x, a, b):
|
|
"""F(x), where F: [a,b] -> [-1,1]."""
|
|
return (x - (b + a) / 2.0) * (2.0 / (b - a))
|
|
|
|
|
|
def map_to_interval(x, a, b):
|
|
"""F(x), where F: [-1,1] -> [a,b]."""
|
|
return (x * (b - a) + (b + a)) / 2.0
|
|
|
|
|
|
def poly2cheb(p, a=-1, b=1):
|
|
"""
|
|
Convert polynomial coefficients into Chebyshev coefficients
|
|
|
|
Parameters
|
|
----------
|
|
p : array-like
|
|
polynomial coefficients
|
|
a,b : real scalars
|
|
lower and upper limits (Default -1,1)
|
|
|
|
Returns
|
|
-------
|
|
ck : ndarray
|
|
Chebychef coefficients
|
|
|
|
POLY2CHEB do the inverse of CHEB2POLY: given a vector of polynomial
|
|
coefficients AK, returns an equivalent vector of Chebyshev
|
|
coefficients CK.
|
|
|
|
This is useful for economization of power series.
|
|
The steps for doing so:
|
|
1. Convert polynomial coefficients to Chebychev coefficients, CK.
|
|
2. Truncate the CK series to a smaller number of terms, using the
|
|
coefficient of the first neglected Chebychev polynomial as an error
|
|
estimate.
|
|
3 Convert back to a polynomial by CHEB2POLY
|
|
|
|
See also
|
|
--------
|
|
cheb2poly
|
|
chebval
|
|
chebfit
|
|
|
|
Examples
|
|
--------
|
|
>>> import numpy as np
|
|
>>> p = np.arange(5)
|
|
>>> ck = poly2cheb(p)
|
|
>>> cheb2poly(ck)
|
|
array([ 1., 2., 3., 4.])
|
|
|
|
Reference
|
|
---------
|
|
William H. Press, Saul Teukolsky,
|
|
William T. Wetterling and Brian P. Flannery (1997)
|
|
"Numerical recipes in Fortran 77", Vol. 1, pp 184-194
|
|
"""
|
|
f = poly1d(p)
|
|
n = len(f.coeffs)
|
|
return chebfit(f, n, a, b)
|
|
|
|
|
|
def cheb2poly(ck, a=-1, b=1):
|
|
"""
|
|
Converts Chebyshev coefficients to polynomial coefficients
|
|
|
|
Parameters
|
|
----------
|
|
ck : array-like
|
|
Chebychef coefficients
|
|
a,b : real, scalars
|
|
lower and upper limits (Default -1,1)
|
|
|
|
Returns
|
|
-------
|
|
p : ndarray
|
|
polynomial coefficients
|
|
|
|
It is not advised to do this for len(ck)>10 due to numerical cancellations.
|
|
|
|
See also
|
|
--------
|
|
chebval
|
|
chebfit
|
|
|
|
Examples
|
|
--------
|
|
>>> import numpy as np
|
|
>>> p = np.arange(5)
|
|
>>> ck = poly2cheb(p)
|
|
>>> cheb2poly(ck)
|
|
array([ 1., 2., 3., 4.])
|
|
|
|
|
|
References
|
|
----------
|
|
http://en.wikipedia.org/wiki/Chebyshev_polynomials
|
|
http://en.wikipedia.org/wiki/Chebyshev_form
|
|
http://en.wikipedia.org/wiki/Clenshaw_algorithm
|
|
"""
|
|
|
|
n = len(ck)
|
|
|
|
b_Nmi = zeros(1)
|
|
b_Nmip1 = zeros(1)
|
|
y = np.r_[2 / (b - a), -(a + b) / (b - a)]
|
|
y2 = 2. * y
|
|
|
|
# Clenshaw recurence
|
|
for ix in xrange(n - 1):
|
|
tmp = b_Nmi
|
|
b_Nmi = polymul(y2, b_Nmi) # polynomial multiplication
|
|
nb = len(b_Nmip1)
|
|
b_Nmip1[-1] = b_Nmip1[-1] - ck[ix]
|
|
b_Nmi[-nb::] = b_Nmi[-nb::] - b_Nmip1
|
|
b_Nmip1 = tmp
|
|
|
|
p = polymul(y, b_Nmi) # polynomial multiplication
|
|
nb = len(b_Nmip1)
|
|
b_Nmip1[-1] = b_Nmip1[-1] - ck[n - 1]
|
|
p[-nb::] = p[-nb::] - b_Nmip1
|
|
return polytrim(p)
|
|
|
|
|
|
def chebextr(n):
|
|
"""
|
|
Return roots of derivative of Chebychev polynomial of the first kind.
|
|
|
|
All local extreme values of the polynomial are either -1 or 1. So,
|
|
CHEBPOLY( N, CHEBEXTR(N) ) ) return the same as (-1).^(N:-1:0)
|
|
except for the numerical noise in the former.
|
|
|
|
Because the extreme values of Chebychev polynomials of the first
|
|
kind are either -1 or 1, their roots are often used as starting
|
|
values for the nodes in minimax approximations.
|
|
|
|
|
|
Parameters
|
|
----------
|
|
n : scalar, integer
|
|
degree of Chebychev polynomial.
|
|
|
|
Examples
|
|
--------
|
|
>>> x = chebextr(4)
|
|
>>> chebpoly(4,x)
|
|
array([ 1., -1., 1., -1., 1.])
|
|
|
|
|
|
Reference
|
|
---------
|
|
http://en.wikipedia.org/wiki/Chebyshev_nodes
|
|
http://en.wikipedia.org/wiki/Chebyshev_polynomials
|
|
"""
|
|
return - cos((pi * arange(n + 1)) / n)
|
|
|
|
|
|
def chebroot(n, kind=1):
|
|
"""
|
|
Return roots of Chebychev polynomial of the first or second kind.
|
|
|
|
The roots of the Chebychev polynomial of the first kind form a particularly
|
|
good set of nodes for polynomial interpolation because the resulting
|
|
interpolation polynomial minimizes the problem of Runge's phenomenon.
|
|
|
|
Parameters
|
|
----------
|
|
n : scalar, integer
|
|
degree of Chebychev polynomial.
|
|
kind: 1 or 2, optional
|
|
kind of Chebychev polynomial (default 1)
|
|
|
|
Examples
|
|
--------
|
|
>>> import numpy as np
|
|
>>> x = chebroot(3)
|
|
>>> np.abs(chebpoly(3,x))<1e-15
|
|
array([ True, True, True], dtype=bool)
|
|
>>> chebpoly(3)
|
|
array([ 4., 0., -3., 0.])
|
|
>>> x2 = chebroot(4,kind=2)
|
|
>>> np.abs(chebpoly(4,x2,kind=2))<1e-15
|
|
array([ True, True, True, True], dtype=bool)
|
|
>>> chebpoly(4,kind=2)
|
|
array([ 16., 0., -12., 0., 1.])
|
|
|
|
|
|
Reference
|
|
---------
|
|
http://en.wikipedia.org/wiki/Chebyshev_nodes
|
|
http://en.wikipedia.org/wiki/Chebyshev_polynomials
|
|
"""
|
|
if kind not in (1, 2):
|
|
raise ValueError('kind must be 1 or 2')
|
|
return - cos(pi * (arange(n) + 0.5 * kind) / (n + kind - 1))
|
|
|
|
|
|
def chebpoly(n, x=None, kind=1):
|
|
"""
|
|
Return Chebyshev polynomial of the first or second kind.
|
|
|
|
These polynomials are orthogonal on the interval [-1,1], with
|
|
respect to the weight function w(x) = (1-x**2)**(-1/2+kind-1).
|
|
|
|
chebpoly(n) returns coefficients of the Chebychev polynomial of degree N.
|
|
chebpoly(n,x) returns the Chebychev polynomial of degree N evaluated at X.
|
|
|
|
Parameters
|
|
----------
|
|
n : integer, scalar
|
|
degree of Chebychev polynomial.
|
|
x : array-like, optional
|
|
evaluation points
|
|
kind: 1 or 2, optional
|
|
kind of Chebychev polynomial (default 1)
|
|
|
|
Returns
|
|
-------
|
|
p : ndarray
|
|
polynomial coefficients if x is None.
|
|
Chebyshev polynomial evaluated at x otherwise
|
|
|
|
Examples
|
|
--------
|
|
>>> import numpy as np
|
|
>>> x = chebroot(3)
|
|
>>> np.abs(chebpoly(3,x))<1e-15
|
|
array([ True, True, True], dtype=bool)
|
|
>>> chebpoly(3)
|
|
array([ 4., 0., -3., 0.])
|
|
>>> x2 = chebroot(4,kind=2)
|
|
>>> np.abs(chebpoly(4,x2,kind=2))<1e-15
|
|
array([ True, True, True, True], dtype=bool)
|
|
>>> chebpoly(4,kind=2)
|
|
array([ 16., 0., -12., 0., 1.])
|
|
|
|
|
|
Reference
|
|
---------
|
|
http://en.wikipedia.org/wiki/Chebyshev_polynomials
|
|
"""
|
|
if x is None: # Calculate coefficients.
|
|
if n == 0:
|
|
p = np.ones(1)
|
|
else:
|
|
p = round(pow(2, n - 2 + kind) * poly(chebroot(n, kind=kind)))
|
|
p[1::2] = 0
|
|
return p
|
|
else: # Evaluate polynomial in chebychev form
|
|
ck = zeros(n + 1)
|
|
ck[0] = 1.
|
|
return _chebval(np.atleast_1d(x), ck, kind=kind)
|
|
|
|
|
|
def chebfit(fun, n=10, a=-1, b=1, trace=False):
|
|
"""
|
|
Computes the Chebyshevs coefficients
|
|
|
|
so that f(x) can be approximated by:
|
|
|
|
n-1
|
|
f(x) = sum ck*Tk(x)
|
|
k=0
|
|
|
|
where Tk is the k'th Chebyshev polynomial of the first kind.
|
|
|
|
Parameters
|
|
----------
|
|
fun : callable
|
|
function to approximate
|
|
n : integer, scalar, optional
|
|
number of base points (abscissas). Default n=10 (maximum 50)
|
|
a,b : real, scalars, optional
|
|
integration limits
|
|
|
|
Returns
|
|
-------
|
|
ck : ndarray
|
|
polynomial coefficients in Chebychev form.
|
|
|
|
Examples
|
|
--------
|
|
Fit exp(x)
|
|
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> a = 0; b = 2
|
|
>>> ck = chebfit(np.exp,7,a,b);
|
|
>>> x = np.linspace(0,4);
|
|
>>> h=plt.plot(x, np.exp(x), 'r', x, chebval(x,ck,a,b), 'g.')
|
|
>>> x1 = chebroot(9)*(b-a)/2+(b+a)/2
|
|
>>> ck1 = chebfit(np.exp(x1))
|
|
>>> h = plt.plot(x,np.exp(x), 'r', x, chebval(x,ck1,a,b),'g.')
|
|
|
|
>>> plt.close()
|
|
|
|
See also
|
|
--------
|
|
chebval
|
|
|
|
Reference
|
|
---------
|
|
http://en.wikipedia.org/wiki/Chebyshev_nodes
|
|
http://mathworld.wolfram.com/ChebyshevApproximationFormula.html
|
|
|
|
W. Fraser (1965)
|
|
"A Survey of Methods of Computing Minimax and Near-Minimax Polynomial
|
|
Approximations for Functions of a Single Independent Variable"
|
|
Journal of the ACM (JACM), Vol. 12 , Issue 3, pp 295 - 314
|
|
"""
|
|
|
|
if (n > 50):
|
|
warnings.warn('CHEBFIT should only be used for n<50')
|
|
|
|
if hasattr(fun, '__call__'):
|
|
x = map_to_interval(chebroot(n), a, b)
|
|
f = fun(x)
|
|
if trace:
|
|
plt.plot(x, f, '+')
|
|
else:
|
|
f = fun
|
|
n = len(f)
|
|
# N-1
|
|
# c[k] = (2/N) sum w[n] f[n]*cos(pi*k*(2n+1)/(2N)), 0 <= k < N.
|
|
# n=0
|
|
#
|
|
# w[0] = 0.5, w[n]=1 for n>0
|
|
|
|
ck = dct(f[::-1]) / n
|
|
ck[0] = ck[0] / 2.
|
|
return ck[::-1]
|
|
|
|
|
|
def chebfit_dct(f, n=(10, ), domain=None):
|
|
"""
|
|
Fit Chebyshev series to N-dimensional function
|
|
so that f(x1, x2,..., xn) can be approximated by:
|
|
|
|
.. math:: f(x_1, x_2,...,x_n) =
|
|
\\sum_{i,j,...k} c_i T_i(x_1)*...*c_k T_k(x_n) ,
|
|
|
|
where Tk is the k'th Chebyshev polynomial of the first kind.
|
|
|
|
Parameters
|
|
----------
|
|
f : callable
|
|
function to approximate
|
|
n : list of integers, optional
|
|
number of base points (abscissas) used for each dimension.
|
|
Default n=10 (maximum 50)
|
|
domain : vector [a1,b1,a2,b2 ,..., an, bn], optional
|
|
defining the rectangle [a1, b1] x [a2, b2] x ...x [an, bn].
|
|
(default domain = (-1,1) * len(n))
|
|
|
|
Returns
|
|
-------
|
|
ck : ndarray
|
|
polynomial coefficients in Chebychev form.
|
|
|
|
Examples
|
|
--------
|
|
Fit exponential function
|
|
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> domain = (0, 2)
|
|
>>> ck = chebfit_dct(np.exp, 7, domain)
|
|
>>> np.allclose(ck, [3.44152387e+00, 3.07252345e+00, 7.38000848e-01,
|
|
... 1.20520053e-01, 1.48805268e-02, 1.47579673e-03,
|
|
... 1.21719524e-04])
|
|
True
|
|
>>> x1 = map_to_interval(chebroot(9), *domain)
|
|
>>> ck1 = chebfit(np.exp(x1))
|
|
>>> np.allclose(ck1, [5.40019009e-07, 8.69418381e-06, 1.22261037e-04,
|
|
... 1.47582673e-03, 1.48805283e-02, 1.20520053e-01,
|
|
... 7.38000848e-01, 3.07252345e+00, 3.44152387e+00])
|
|
True
|
|
|
|
x = np.linspace(0,4)
|
|
h = plt.plot(x, np.exp(x), 'r', x, chebvalnd(ck, x,ck,a,b), 'g.')
|
|
h = plt.plot(x, np.exp(x), 'r', x, chebvalnd(ck1, x,ck1,a,b),'b.')
|
|
plt.close()
|
|
|
|
See also
|
|
--------
|
|
chebval, chebvalnd
|
|
|
|
Reference
|
|
---------
|
|
http://en.wikipedia.org/wiki/Chebyshev_nodes
|
|
http://mathworld.wolfram.com/ChebyshevApproximationFormula.html
|
|
|
|
W. Fraser (1965)
|
|
"A Survey of Methods of Computing Minimax and Near-Minimax Polynomial
|
|
Approximations for Functions of a Single Independent Variable"
|
|
Journal of the ACM (JACM), Vol. 12 , Issue 3, pp 295 - 314
|
|
"""
|
|
n = np.atleast_1d(n)
|
|
if np.any(n > 50):
|
|
warnings.warn('CHEBFIT should only be used for n<50')
|
|
|
|
if hasattr(f, '__call__'):
|
|
if domain is None:
|
|
domain = (-1, 1) * len(n)
|
|
domain = np.atleast_2d(domain).reshape((-1, 2))
|
|
xi = [map_to_interval(chebroot(ni), d[0], d[1])
|
|
for ni, d in zip(n, domain)]
|
|
Xi = np.meshgrid(*xi)
|
|
ck = f(*Xi)
|
|
else:
|
|
ck = f
|
|
n = ck.shape
|
|
|
|
ndim = len(n)
|
|
for i in range(ndim):
|
|
ck = dct(ck[..., ::-1])
|
|
ck[..., 0] = ck[..., 0] / 2.
|
|
if i < ndim-1:
|
|
ck = np.rollaxis(ck, axis=-1)
|
|
return ck / np.product(n)
|
|
|
|
|
|
def idct(x, n=None):
|
|
"""
|
|
Inverse Discrete Cosine Transform
|
|
|
|
N-1
|
|
x[k] = 1/N sum w[n]*y[n]*cos(pi*k*(2n+1)/(2*N)), 0 <= k < N.
|
|
n=0
|
|
|
|
w(0) = 1/2
|
|
w(n) = 1 for n>0
|
|
|
|
Examples
|
|
--------
|
|
>>> import numpy as np
|
|
>>> x = np.arange(5)
|
|
>>> np.abs(x-idct(dct(x)))<1e-14
|
|
array([ True, True, True, True, True], dtype=bool)
|
|
>>> np.abs(x-dct(idct(x)))<1e-14
|
|
array([ True, True, True, True, True], dtype=bool)
|
|
|
|
Reference
|
|
---------
|
|
http://en.wikipedia.org/wiki/Discrete_cosine_transform
|
|
http://users.ece.utexas.edu/~bevans/courses/ee381k/lectures/
|
|
"""
|
|
return _idct(x, n=n, norm=None)*0.5/len(x)
|
|
|
|
|
|
def _chebval(x, ck, kind=1):
|
|
"""
|
|
Evaluate polynomial in Chebyshev form.
|
|
|
|
A polynomial of degree N in Chebyshev form is a polynomial p(x):
|
|
|
|
N
|
|
p(x) = sum ck*Tk(x)
|
|
k=0
|
|
or
|
|
N
|
|
p(x) = sum ck*Uk(x)
|
|
k=0
|
|
|
|
where Tk and Uk are the k'th Chebyshev polynomial of the first and second
|
|
kind, respectively.
|
|
|
|
References
|
|
----------
|
|
http://en.wikipedia.org/wiki/Clenshaw_algorithm
|
|
http://mathworld.wolfram.com/ClenshawRecurrenceFormula.html
|
|
"""
|
|
n = len(ck)
|
|
b_Nmi = zeros(x.shape) # b_(N-i)
|
|
b_Nmip1 = b_Nmi.copy() # b_(N-i+1)
|
|
x2 = 2 * x
|
|
# Clenshaw reccurence
|
|
for ix in xrange(n - 1):
|
|
tmp = b_Nmi
|
|
b_Nmi = x2 * b_Nmi - b_Nmip1 + ck[ix]
|
|
b_Nmip1 = tmp
|
|
return kind * x * b_Nmi - b_Nmip1 + ck[n - 1]
|
|
|
|
|
|
def chebval(x, ck, a=-1, b=1, kind=1, fill=None):
|
|
"""
|
|
Evaluate polynomial in Chebyshev form at X
|
|
|
|
A polynomial of degree N in Chebyshev form is a polynomial p(x) of the form
|
|
|
|
N
|
|
p(x) = sum ck*Tk(x)
|
|
k=0
|
|
|
|
where Tk is the k'th Chebyshev polynomial of the first or second kind.
|
|
|
|
Paramaters
|
|
----------
|
|
x : array-like
|
|
points to evaluate
|
|
ck : array-like
|
|
polynomial coefficients in Chebyshev form ordered from highest degree
|
|
to zero
|
|
a,b : real, scalars, optional
|
|
limits for polynomial (Default -1,1)
|
|
kind: 1 or 2, optional
|
|
kind of Chebychev polynomial (default 1)
|
|
fill : scalar, optional
|
|
If provided, define value to return for `x < a` or `b < x`.
|
|
|
|
Examples
|
|
--------
|
|
Plot Chebychev polynomial of the first kind and order 4:
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> x = np.linspace(-1,1)
|
|
>>> ck = np.zeros(5); ck[-1]=1
|
|
>>> h = plt.plot(x,chebval(x,ck),x,chebpoly(4,x),'.')
|
|
>>> plt.close()
|
|
|
|
Fit exponential function:
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> ck = chebfit(np.exp,7,0,2)
|
|
>>> x = np.linspace(0,4);
|
|
>>> h=plt.plot(x,chebval(x,ck,0,2),'g',x,np.exp(x))
|
|
>>> plt.close()
|
|
|
|
See also
|
|
--------
|
|
chebfit
|
|
|
|
References
|
|
----------
|
|
http://en.wikipedia.org/wiki/Clenshaw_algorithm
|
|
http://mathworld.wolfram.com/ClenshawRecurrenceFormula.html
|
|
"""
|
|
|
|
y = map_from_interval(atleast_1d(x), a, b)
|
|
if fill is None:
|
|
f = _chebval(y, ck, kind=kind)
|
|
else:
|
|
cond = (abs(y) <= 1)
|
|
f = where(cond, 0, fill)
|
|
if any(cond):
|
|
yk = extract(cond, y)
|
|
f[cond] = _chebval(yk, ck, kind=kind)
|
|
return f
|
|
|
|
|
|
def chebder(ck, a=-1, b=1):
|
|
"""
|
|
Differentiate Chebyshev polynomial
|
|
|
|
Parameters
|
|
----------
|
|
ck : array-like
|
|
polynomial coefficients in Chebyshev form of function to differentiate
|
|
a,b : real, scalars
|
|
limits for polynomial(Default -1,1)
|
|
|
|
Return
|
|
------
|
|
cder : ndarray
|
|
polynomial coefficients in Chebyshev form of the derivative
|
|
|
|
Examples
|
|
--------
|
|
|
|
Fit exponential function:
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> ck = chebfit(np.exp,7,0,2)
|
|
>>> x = np.linspace(0,4)
|
|
>>> ck2 = chebder(ck,0,2);
|
|
>>> h = plt.plot(x,chebval(x,ck,0,2),'g',x,np.exp(x),'r')
|
|
>>> plt.close()
|
|
|
|
See also
|
|
--------
|
|
chebint
|
|
chebfit
|
|
|
|
Reference
|
|
---------
|
|
http://en.wikipedia.org/wiki/Chebyshev_polynomials
|
|
|
|
W. Fraser (1965)
|
|
"A Survey of Methods of Computing Minimax and Near-Minimax Polynomial
|
|
Approximations for Functions of a Single Independent Variable"
|
|
Journal of the ACM (JACM), Vol. 12 , Issue 3, pp 295 - 314
|
|
"""
|
|
|
|
n = len(ck) - 1
|
|
cder = zeros(n, dtype=asarray(ck).dtype)
|
|
cder[0] = 2 * n * ck[0]
|
|
cder[1] = 2 * (n - 1) * ck[1]
|
|
for j in xrange(2, n):
|
|
cder[j] = cder[j - 2] + 2 * (n - j) * ck[j]
|
|
|
|
return cder * 2. / (b - a) # Normalize to the interval b-a.
|
|
|
|
|
|
def chebint(ck, a=-1, b=1):
|
|
"""
|
|
Integrate Chebyshev polynomial
|
|
|
|
Parameters
|
|
----------
|
|
ck : array-like
|
|
polynomial coefficients in Chebyshev form of function to integrate.
|
|
a,b : real, scalars
|
|
limits for polynomial(Default -1,1)
|
|
|
|
Return
|
|
------
|
|
cint : ndarray
|
|
polynomial coefficients in Chebyshev form of the integrated function
|
|
|
|
Examples
|
|
--------
|
|
Fit exponential function:
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> ck = chebfit(np.exp,7,0,2)
|
|
>>> x = np.linspace(0,4)
|
|
>>> ck2 = chebint(ck,0,2);
|
|
>>> h=plt.plot(x,chebval(x,ck,0,2),'g',x,np.exp(x),'r.')
|
|
>>> plt.close()
|
|
|
|
See also
|
|
--------
|
|
chebder
|
|
chebfit
|
|
|
|
Reference
|
|
---------
|
|
http://en.wikipedia.org/wiki/Chebyshev_polynomials
|
|
|
|
W. Fraser (1965)
|
|
"A Survey of Methods of Computing Minimax and Near-Minimax Polynomial
|
|
Approximations for Functions of a Single Independent Variable"
|
|
Journal of the ACM (JACM), Vol. 12 , Issue 3, pp 295 - 314
|
|
"""
|
|
|
|
# int T0(x) = T1(x)+1
|
|
# int T1(x) = 0.5*(T2(x)/2-T0/2)
|
|
# int Tn(x) dx = 0.5*{Tn+1(x)/(n+1) - Tn-1(x)/(n-1)}
|
|
# N
|
|
# p(x) = sum cn*Tn(x)
|
|
# n=0
|
|
|
|
# int p(x) dx = sum cn * int(Tn(x)dx) =
|
|
# 0.5*sum cn *{Tn+1(x)/(n+1) - Tn-1(x)/(n-1)} = 0.5 sum (cn-1-cn+1)*Tn/n n>0
|
|
|
|
n = len(ck)
|
|
|
|
cint = zeros(n)
|
|
con = 0.25 * (b - a)
|
|
|
|
dif1 = diff(ck[-1::-2])
|
|
ix1 = np.r_[1:n - 1:2]
|
|
cint[ix1] = -(con * dif1) / ix1
|
|
if n > 3:
|
|
dif2 = diff(ck[-2::-2])
|
|
ix2 = np.r_[2:n - 1:2]
|
|
cint[ix2] = -(con * dif2) / ix2
|
|
cint = cint[::-1]
|
|
# cint(n) is a special case
|
|
cint[-1] = (con * ck[n - 2]) / (n - 1)
|
|
# Set integration constant
|
|
cint[0] = 2 * np.sum((-1) ** np.r_[0:n - 1] * cint[-2::-1])
|
|
return cint
|
|
|
|
|
|
class Cheb1d(object):
|
|
coeffs = None
|
|
order = None
|
|
a = None
|
|
b = None
|
|
kind = None
|
|
|
|
def __init__(self, ck, a=-1, b=1, kind=1):
|
|
if isinstance(ck, Cheb1d):
|
|
for key in ck.__dict__.keys():
|
|
self.__dict__[key] = ck.__dict__[key]
|
|
return
|
|
cki = trim_zeros(atleast_1d(ck), 'b')
|
|
if len(cki.shape) > 1:
|
|
raise ValueError("Polynomial must be 1d only.")
|
|
self.__dict__['coeffs'] = cki
|
|
self.__dict__['order'] = len(cki) - 1
|
|
self.__dict__['a'] = a
|
|
self.__dict__['b'] = b
|
|
self.__dict__['kind'] = kind
|
|
|
|
def __call__(self, x):
|
|
return chebval(x, self.coeffs, self.a, self.b, self.kind)
|
|
|
|
def __array__(self, t=None):
|
|
if t:
|
|
return asarray(self.coeffs, t)
|
|
else:
|
|
return asarray(self.coeffs)
|
|
|
|
def __repr__(self):
|
|
vals = repr(self.coeffs)
|
|
vals = vals[6:-1]
|
|
return "Cheb1d(%s)" % vals
|
|
|
|
def __len__(self):
|
|
return self.order
|
|
|
|
def __str__(self):
|
|
pass
|
|
|
|
def __neg__(self):
|
|
new = Cheb1d(self)
|
|
new.coeffs = -self.coeffs
|
|
return new
|
|
|
|
def __pos__(self):
|
|
return self
|
|
|
|
def __add__(self, other):
|
|
other = Cheb1d(other)
|
|
new = Cheb1d(self)
|
|
new.coeffs = polyadd(self.coeffs, other.coeffs)
|
|
return new
|
|
|
|
def __radd__(self, other):
|
|
return self.__add__(other)
|
|
|
|
def __sub__(self, other):
|
|
other = Cheb1d(other)
|
|
new = Cheb1d(self)
|
|
new.coeffs = polysub(self.coeffs, other.coeffs)
|
|
return new
|
|
|
|
def __rsub__(self, other):
|
|
other = Cheb1d(other)
|
|
new = Cheb1d(self)
|
|
new.coeffs = polysub(other.coeffs, new.coeffs)
|
|
return new
|
|
|
|
def __eq__(self, other):
|
|
other = Cheb1d(other)
|
|
return (all(self.coeffs == other.coeffs) and (self.a == other.a) and
|
|
(self.b == other.b) and (self.kind == other.kind))
|
|
|
|
def __ne__(self, other):
|
|
return any(self.coeffs != other.coeffs) or (self.a != other.a) or (
|
|
self.b != other.b) or (self.kind != other.kind)
|
|
|
|
def __setattr__(self, key, val):
|
|
raise ValueError("Attributes cannot be changed this way.")
|
|
|
|
def __getattr__(self, key):
|
|
if key in ['c', 'coef', 'coefficients']:
|
|
return self.coeffs
|
|
elif key in ['o']:
|
|
return self.order
|
|
elif key in ['a']:
|
|
return self.a
|
|
elif key in ['b']:
|
|
return self.b
|
|
elif key in ['k']:
|
|
return self.kind
|
|
else:
|
|
try:
|
|
return self.__dict__[key]
|
|
except KeyError:
|
|
raise AttributeError(
|
|
"'%s' has no attribute '%s'" %
|
|
(self.__class__, key))
|
|
|
|
def __getitem__(self, val):
|
|
if val > self.order:
|
|
return 0
|
|
if val < 0:
|
|
return 0
|
|
return self.coeffs[val]
|
|
|
|
def __setitem__(self, key, val):
|
|
# ind = self.order - key
|
|
if key < 0:
|
|
raise ValueError("Does not support negative powers.")
|
|
if key > self.order:
|
|
zr = zeros(key - self.order, self.coeffs.dtype)
|
|
self.__dict__['coeffs'] = concatenate((self.coeffs, zr))
|
|
self.__dict__['order'] = key
|
|
self.__dict__['coeffs'][key] = val
|
|
return
|
|
|
|
def __iter__(self):
|
|
return iter(self.coeffs)
|
|
|
|
def integ(self, m=1):
|
|
"""
|
|
Return an antiderivative (indefinite integral) of this polynomial.
|
|
|
|
Refer to `chebint` for full documentation.
|
|
|
|
See Also
|
|
--------
|
|
chebint : equivalent function
|
|
|
|
"""
|
|
integ = Cheb1d(self)
|
|
integ.coeffs = chebint(self.coeffs, self.a, self.b)
|
|
return integ
|
|
|
|
def deriv(self, m=1):
|
|
"""
|
|
Return a derivative of this polynomial.
|
|
|
|
Refer to `chebder` for full documentation.
|
|
|
|
See Also
|
|
--------
|
|
chebder : equivalent function
|
|
|
|
"""
|
|
der = Cheb1d(self)
|
|
der.coeffs = chebder(self.coeffs, self.a, self.b)
|
|
return der
|
|
|
|
|
|
def padefit(c, m=None):
|
|
"""
|
|
Rational polynomial fitting from polynomial coefficients
|
|
|
|
Parameters
|
|
----------
|
|
c : array-like
|
|
coefficients of power series expansion from highest degree to zero.
|
|
m : scalar integer
|
|
order of denominator polynomial. (Default floor((len(c)-1)/2))
|
|
|
|
Returns
|
|
-------
|
|
num, den : poly1d
|
|
numerator and denominator polynomials for the pade approximation
|
|
|
|
If the function is well approximated by
|
|
M+N+1
|
|
f(x) = sum c(2*n+2-k)*x^k
|
|
k=0
|
|
|
|
then the pade approximation is given by
|
|
M
|
|
sum c1(n-k+1)*x^k
|
|
k=0
|
|
f(x) = ------------------------
|
|
N
|
|
sum c2(n-k+1)*x^k
|
|
k=0
|
|
|
|
Note: c must be ordered for direct use with polyval
|
|
|
|
Example
|
|
-------
|
|
Pade approximation to exp(x)
|
|
>>> import scipy.special as sp
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> c = poly1d(1./sp.gamma(np.r_[6+1:0:-1]))
|
|
>>> [p, q] = padefit(c)
|
|
>>> p; q
|
|
poly1d([ 0.00277778, 0.03333333, 0.2 , 0.66666667, 1. ])
|
|
poly1d([ 0.03333333, -0.33333333, 1. ])
|
|
|
|
>>> x = np.linspace(0,4);
|
|
>>> h = plt.plot(x,c(x),x,p(x)/q(x),'g-', x,np.exp(x),'r.')
|
|
>>> plt.close()
|
|
|
|
See also
|
|
--------
|
|
scipy.misc.pade
|
|
|
|
"""
|
|
if not m:
|
|
m = int(floor((len(c) - 1) * 0.5))
|
|
c = asarray(c)
|
|
return pade(c[::-1], m)
|
|
|
|
|
|
def test_pade():
|
|
cof = array(([1.0, 1.0, 1.0 / 2, 1. / 6, 1. / 24]))
|
|
p, q = pade(cof, 2)
|
|
t = arange(0, 2, 0.1)
|
|
assert(all(abs(p(t) / q(t) - exp(t)) < 0.3))
|
|
|
|
|
|
def padefitlsq(fun, m, k, a=-1, b=1, trace=False, x=None, end_points=True):
|
|
"""
|
|
Rational polynomial fitting. A minimax solution by least squares.
|
|
|
|
Parameters
|
|
----------
|
|
fun : callable or or a two column matrix
|
|
f=[x,f(x)] where length(x)>(m+k+1)*8.
|
|
m, k : integer
|
|
number of coefficients of the numerator and denominater, respectively.
|
|
a, b : real scalars
|
|
evaluation limits, (default a=-1,b=1)
|
|
|
|
Returns
|
|
-------
|
|
num, den : poly1d
|
|
numerator and denominator polynomials for the pade approximation
|
|
dev : ndarray
|
|
maximum absolute deviation of the approximation
|
|
|
|
The pade approximation is given by
|
|
m
|
|
sum c1[m-i]*x**i
|
|
i=0
|
|
f(x) = ------------------------
|
|
k
|
|
sum c2[k-i]*x**i
|
|
i=0
|
|
|
|
If F is a two column matrix, [x f(x)], a good choice for x is:
|
|
|
|
x = cos(pi/(N-1)*(N-1:-1:0))*(b-a)/2+ (a+b)/2, where N = (m+k+1)*8;
|
|
|
|
Note: c1 and c2 are ordered for direct use with polyval
|
|
|
|
Example
|
|
-------
|
|
|
|
Pade approximation to exp(x) between 0 and 2
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> [c1, c2] = padefitlsq(np.exp,3,3,0,2)
|
|
>>> c1; c2
|
|
poly1d([ 0.01443847, 0.128842 , 0.55284547, 0.99999962])
|
|
poly1d([-0.0049658 , 0.07610473, -0.44716929, 1. ])
|
|
|
|
>>> x = np.linspace(0,4)
|
|
>>> h = plt.plot(x, polyval(c1,x)/polyval(c2,x),'g')
|
|
>>> h = plt.plot(x, np.exp(x), 'r')
|
|
|
|
See also
|
|
--------
|
|
padefit
|
|
|
|
Reference
|
|
---------
|
|
William H. Press, Saul Teukolsky,
|
|
William T. Wetterling and Brian P. Flannery (1997)
|
|
"Numerical recipes in Fortran 77", Vol. 1, pp 197-20
|
|
"""
|
|
|
|
NFAC = 8
|
|
BIG = 1e30
|
|
MAXIT = 5
|
|
|
|
smallest_devmax = BIG
|
|
ncof = m + k + 1
|
|
# Number of points where function is evaluated, i.e. fineness of mesh
|
|
npt = NFAC * ncof
|
|
|
|
if x is None:
|
|
if end_points:
|
|
# Use the location of the local extreme values of
|
|
# the Chebychev polynomial of the first kind of degree NPT-1.
|
|
x = map_to_interval(chebextr(npt - 1), a, b)
|
|
else:
|
|
# Use the roots of the Chebychev polynomial of the first kind of
|
|
# degree NPT. Note this is useful if there are singularities close
|
|
# to the endpoints.
|
|
x = map_to_interval(chebroot(npt, kind=1), a, b)
|
|
|
|
if hasattr(fun, '__call__'):
|
|
fs = fun(x)
|
|
else:
|
|
fs = fun
|
|
n = len(fs)
|
|
if n < npt:
|
|
warnings.warn(
|
|
'Check the result! ' +
|
|
'Number of function values should be at least: %d' % npt)
|
|
|
|
if trace:
|
|
plt.plot(x, fs, '+')
|
|
|
|
wt = np.ones((npt))
|
|
ee = np.ones((npt))
|
|
mad = 0
|
|
|
|
u = zeros((npt, ncof))
|
|
for ix in xrange(MAXIT):
|
|
# Set up design matrix for least squares fit.
|
|
pow1 = wt
|
|
bb = pow1 * (fs + abs(mad) * sign(ee))
|
|
|
|
for jx in xrange(m + 1):
|
|
u[:, jx] = pow1
|
|
pow1 = pow1 * x
|
|
|
|
pow1 = -bb
|
|
for jx in xrange(m + 1, ncof):
|
|
pow1 = pow1 * x
|
|
u[:, jx] = pow1
|
|
|
|
[u1, w, v] = linalg.svd(u, full_matrices=False)
|
|
cof = where(w == 0, 0.0, np.dot(bb, u1) / w)
|
|
cof = np.dot(cof, v)
|
|
|
|
# Tabulate the deviations and revise the weights
|
|
ee = polyval(cof[m::-1], x) / \
|
|
polyval(cof[ncof:m:-1].tolist() + [1, ], x) - fs
|
|
|
|
wt = np.abs(ee)
|
|
devmax = max(wt)
|
|
mad = wt.mean() # mean absolute deviation
|
|
|
|
# Save only the best coefficients found
|
|
if (devmax <= smallest_devmax):
|
|
smallest_devmax = devmax
|
|
c1 = cof[m::-1]
|
|
c2 = cof[ncof:m:-1].tolist() + [1, ]
|
|
|
|
if trace:
|
|
print('Iteration=%d, max error=%g' % (ix, devmax))
|
|
plt.plot(x, fs, x, ee + fs)
|
|
return poly1d(c1), poly1d(c2)
|
|
|
|
|
|
def main():
|
|
|
|
[c1, c2] = padefitlsq(exp, 3, 3, 0, 2)
|
|
|
|
x = linspace(0, 4)
|
|
plt.plot(x, polyval(c1, x) / polyval(c2, x), 'g')
|
|
plt.plot(x, exp(x), 'r')
|
|
|
|
import scipy.special as sp
|
|
|
|
p = [[1, 1, 1], [2, 2, 2]]
|
|
pi = polyint(p, 1)
|
|
_pr = polyreloc(p, 2)
|
|
_pd = polyder(p)
|
|
_st = poly2str(p)
|
|
c = poly1d(
|
|
1. /
|
|
sp.gamma(
|
|
np.r_[
|
|
6 +
|
|
1:0:-
|
|
1])) # polynomial coeff exponential function
|
|
[p, q] = padefit(c)
|
|
x = linspace(0, 4)
|
|
plt.plot(x, c(x), x, p(x) / q(x), 'g-', x, exp(x), 'r.')
|
|
plt.close()
|
|
x = arange(4)
|
|
dx = dct(x)
|
|
_idx = idct(dx)
|
|
|
|
a = 0
|
|
b = 2
|
|
ck = chebfit(exp, 6, a, b)
|
|
_t = chebval(0, ck, a, b)
|
|
x = linspace(0, 2, 6)
|
|
plt.plot(x, exp(x), 'r', x, chebval(x, ck, a, b), 'g.')
|
|
# x1 = chebroot(9).'*(b-a)/2+(b+a)/2 ;
|
|
# ck1 =chebfit([x1 exp(x1)],9,a,b);
|
|
# plot(x,exp(x),'r'), hold on
|
|
# plot(x,chebval(x,ck1,a,b),'g'), hold off
|
|
|
|
_t = poly2hstr([1, 1, 2])
|
|
py = [1, 0]
|
|
px = polyshift(py, 0, 5)
|
|
_t1 = polyval(px, [0, 2.5, 5]) # % This is the same as the line below
|
|
_t2 = polyval(py, [-1, 0, 1])
|
|
|
|
px = [1, 0]
|
|
py = polyishift(px, 0, 5)
|
|
t1 = polyval(px, [0, 2.5, 5]) # % This is the same as the line below
|
|
t2 = polyval(py, [-1, 0, 1])
|
|
print(t1, t2)
|
|
|
|
|
|
def test_polydeg():
|
|
x = np.linspace(0, 10, 300)
|
|
y = np.sin(x ** 3 / 100) ** 2 + 0.05 * np.random.randn(x.size)
|
|
n = polydeg(x, y)
|
|
# n = 2
|
|
p = orthofit(x, y, n)
|
|
xi = linspace(x.min(), x.max())
|
|
ys0 = orthoval(p, x)
|
|
ys = orthoval(p, xi)
|
|
|
|
ys2 = orthoval(p, xi)
|
|
plt.plot(x, y, '.', x, ys0, 'k', xi, ys, 'r', xi, ys2, 'r.')
|
|
p0 = ortho2poly(p)
|
|
p1 = polyfit(x, ys0, n)
|
|
plt.plot(xi, polyval(p0, xi), 'g-.', xi, polyval(p1, xi), 'go')
|
|
plt.show('hold')
|
|
|
|
|
|
def test_docstrings():
|
|
import doctest
|
|
print('Testing docstrings in %s' % __file__)
|
|
doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE)
|
|
|
|
|
|
def chebvandernd(deg, *xi):
|
|
"""Pseudo-Vandermonde matrix of given degrees.
|
|
|
|
Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
|
|
points `(x1, x2, ..., xn)`. If `l, m, n` are the given degrees in
|
|
`x1, x2, x3`, then The pseudo-Vandermonde matrix is defined by
|
|
|
|
.. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = T_i(x1)*T_j(x2)*T_k(x3),
|
|
|
|
where `0 <= i <= l`, `0 <= j <= m`, and `0 <= k <= n`. The leading
|
|
indices of `V` index the points `(x, y, z)` and the last index encodes
|
|
the degrees of the Chebyshev polynomials.
|
|
|
|
If ``V = chebvandernd([xdeg, ydeg, zdeg], x, y, z)``, then the columns
|
|
of `V` correspond to the elements of a 3-D coefficient array `c` of
|
|
shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order
|
|
|
|
.. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...
|
|
|
|
and ``np.dot(V, c.flat)`` and ``chebvalnd(c, x, y, z)`` will be the
|
|
same up to roundoff. This equivalence is useful both for least squares
|
|
fitting and for the evaluation of a large number of N-D Chebyshev
|
|
series of the same degrees and sample points.
|
|
|
|
Parameters
|
|
----------
|
|
deg : list of ints
|
|
List of maximum degrees of the form [x1_deg, x2_deg, ...,xn_deg].
|
|
x1, x2, ..., xn : array_like
|
|
Arrays of point coordinates, all of the same shape. The dtypes will
|
|
be converted to either float64 or complex128 depending on whether
|
|
any of the elements are complex. Scalars are converted to 1-D
|
|
arrays.
|
|
|
|
Returns
|
|
-------
|
|
vander : ndarray
|
|
The shape of the returned matrix is ``x1.shape + (order,)``, where
|
|
:math:`order = (deg[0]+1)*(deg([1]+1)*...*(deg[n-1]+1)`. The dtype
|
|
will be the same as the converted `x1`, `x2`, ... `xn`.
|
|
|
|
See Also
|
|
--------
|
|
chebvander, chebvalnd, chebfitnd
|
|
"""
|
|
ideg = [int(d) for d in deg]
|
|
is_valid = np.array([di == d and di >= 0 for di, d in zip(ideg, deg)])
|
|
if np.any(is_valid != 1):
|
|
raise ValueError("degrees must be non-negative integers")
|
|
ndim = len(xi)
|
|
if len(ideg) != ndim:
|
|
msg = 'length of deg must be the same as number of dimensions'
|
|
raise ValueError(msg)
|
|
|
|
xi = np.array(xi, copy=0) + 0.0
|
|
chebvander = np.polynomial.chebyshev.chebvander
|
|
shape0 = xi[0].shape
|
|
s0 = (1,) * ndim
|
|
vxi = [chebvander(x, d).reshape(shape0 + s0[:i] + (-1,) + s0[i + 1::])
|
|
for i, (d, x) in enumerate(zip(ideg, xi))]
|
|
|
|
v = reduce(np.multiply, vxi)
|
|
|
|
return v.reshape(v.shape[:-ndim] + (-1,))
|
|
|
|
|
|
def chebfitnd(xi, f, deg, rcond=None, full=False, w=None):
|
|
"""
|
|
Least squares fit of Chebyshev series to N-dimensional data.
|
|
Return the coefficients of a Chebyshev series of degree `deg` that is the
|
|
least squares fit to the data values `f` given at points
|
|
`x1`, `x2`,..., `xn`
|
|
|
|
The fitted polynomial(s) are in the form
|
|
.. math:: p(x,y) = c_00 + c_11 * T_1(x)*T_1(y) + ..c_ij * T_i(x)*T_j(y).
|
|
+ c_nm * T_n(x)*T_m(y),
|
|
where `n`, `m` is `deg`.
|
|
|
|
Parameters
|
|
----------
|
|
xi: tuple
|
|
x1-, x2-,....xn-coordinates of the sample points.
|
|
f : array_like
|
|
function values at the sample points ``(x1[i], x2[i], ..., xn[i])``.
|
|
deg : list
|
|
Degrees of the fitting series in the x1, x2, ..., xn directions,
|
|
respectively.
|
|
rcond : float, optional
|
|
Relative condition number of the fit. Singular values smaller than
|
|
this relative to the largest singular value will be ignored. The
|
|
default value is size(x1)*eps, where eps is the relative precision of
|
|
the float type, about 2e-16 in most cases.
|
|
full : bool, optional
|
|
Switch determining nature of return value. When it is False (the
|
|
default) just the coefficients are returned, when True diagnostic
|
|
information from the singular value decomposition is also returned.
|
|
w : array_like, optional
|
|
Weights. If not None, the contribution of each point
|
|
``(x1[i], x2[i], ..., xn[i])`` to the fit is weighted by `w[i]`.
|
|
Ideally the weights are chosen so that the errors of the products
|
|
``w[i]*f[i]`` all have the same variance. The default value is None.
|
|
|
|
Returns
|
|
-------
|
|
coef : ndarray, shape (M1, M2,..., Mn)
|
|
Chebyshev coefficients ordered from low to high.
|
|
[residuals, rank, singular_values, rcond] : list
|
|
These values are only returned if `full` = True
|
|
resid -- sum of squared residuals of the least squares fit
|
|
rank -- the numerical rank of the scaled Vandermonde matrix
|
|
sv -- singular values of the scaled Vandermonde matrix
|
|
rcond -- value of `rcond`.
|
|
For more details, see `linalg.lstsq`.
|
|
Warns
|
|
-----
|
|
RankWarning
|
|
The rank of the coefficient matrix in the least-squares fit is
|
|
deficient. The warning is only raised if `full` = False. The
|
|
warnings can be turned off by
|
|
>>> import warnings
|
|
>>> warnings.simplefilter('ignore', RankWarning)
|
|
|
|
See Also
|
|
--------
|
|
chebvalnd, chebgridnd
|
|
|
|
Notes
|
|
-----
|
|
The solution is the coefficients of the Chebyshev series `p` that
|
|
minimizes the sum of the weighted squared errors
|
|
.. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,
|
|
where :math:`w_j` are the weights. This problem is solved by setting up
|
|
as the (typically) overdetermined matrix equation
|
|
.. math:: V(x, y) * c = w * y,
|
|
where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the
|
|
coefficients to be solved for, `w` are the weights, and `y` are the
|
|
observed values. This equation is then solved using the singular value
|
|
decomposition of `V`.
|
|
If some of the singular values of `V` are so small that they are
|
|
neglected, then a `RankWarning` will be issued. This means that the
|
|
coefficient values may be poorly determined. Using a lower order fit
|
|
will usually get rid of the warning. The `rcond` parameter can also be
|
|
set to a value smaller than its default, but the resulting fit may be
|
|
spurious and have large contributions from roundoff error.
|
|
Fits using Chebyshev series are usually better conditioned than fits
|
|
using power series, but much can depend on the distribution of the
|
|
sample points and the smoothness of the data. If the quality of the fit
|
|
is inadequate splines may be a good alternative.
|
|
|
|
References
|
|
----------
|
|
.. [1] Wikipedia, "Curve fitting",
|
|
http://en.wikipedia.org/wiki/Curve_fitting
|
|
Examples
|
|
--------
|
|
"""
|
|
# xi = np.array(xi, copy=0) + 0.0
|
|
z = np.array(f)
|
|
degrees = np.asarray(deg, dtype=int)
|
|
orders = degrees + 1
|
|
order = np.product(orders)
|
|
|
|
ndims = np.array([x.ndim for x in xi])
|
|
ndim = len(ndims)
|
|
sizes = np.array([x.size for x in xi])
|
|
if np.any(ndims != ndim) or z.ndim != ndim:
|
|
raise TypeError("expected %dD array for x1, x2,...,xn and f" % ndim)
|
|
if np.any(sizes == 0):
|
|
raise TypeError("expected non-empty vector for xi")
|
|
|
|
lhs = chebvandernd(degrees, *xi).reshape((-1, order))
|
|
rhs = z.ravel()
|
|
if w is not None:
|
|
w = np.asarray(w).ravel() + 0.0
|
|
if len(lhs) != len(w):
|
|
raise TypeError("expected x and w to have same length")
|
|
lhs = lhs * w
|
|
rhs = rhs * w
|
|
|
|
if rcond is None:
|
|
rcond = xi[0].size * np.finfo(x.dtype).eps
|
|
|
|
if issubclass(lhs.dtype.type, np.complexfloating):
|
|
scl = np.sqrt((np.square(lhs.real) + np.square(lhs.imag)).sum(axis=0))
|
|
else:
|
|
scl = np.sqrt(np.square(lhs).sum(axis=0))
|
|
scl[scl == 0] = 1
|
|
|
|
# Solve the least squares problem.
|
|
c, resids, rank, s = np.linalg.lstsq(lhs/scl, rhs, rcond)
|
|
c = (c/scl).reshape(orders)
|
|
|
|
if rank != order and not full:
|
|
msg = "The fit may be poorly conditioned"
|
|
warnings.warn(msg, pu.RankWarning)
|
|
|
|
if full:
|
|
return c, [resids, rank, s, rcond]
|
|
else:
|
|
return c
|
|
|
|
|
|
def chebvalnd(c, *xi):
|
|
"""
|
|
Evaluate a N-D Chebyshev series at points (x1, x2, ..., xn).
|
|
|
|
This function returns the values:
|
|
|
|
.. math:: p(x1,x2,...,xn) =
|
|
\\sum_{i,j,...,k} c_{i,j,...,k} * T_i(x1) * T_j(x2)*...* T_k(xn)
|
|
|
|
The parameters `x1`, `x2`, ...., `xn` are converted to arrays only if
|
|
they are tuples or a lists, otherwise they are treated as a scalars and
|
|
they must have the same shape after conversion. In either case, either
|
|
`x1`, `x2`, ..., `xn` or their elements must support multiplication and
|
|
addition both with themselves and with the elements of `c`.
|
|
|
|
If `c` has fewer than N dimensions, ones are implicitly appended to its
|
|
shape to make it N-D. The shape of the result will be c.shape[3:] +
|
|
x1.shape.
|
|
|
|
Parameters
|
|
----------
|
|
c : array_like
|
|
Array of coefficients ordered so that the coefficient of the term of
|
|
multi-degree i,j,...,k is contained in ``c[i,j,...,k]``. If `c` has
|
|
dimension greater than N the remaining indices enumerate multiple sets
|
|
of coefficients.
|
|
x1, x2,..., xn : array_like, compatible object
|
|
The N dimensional series is evaluated at the points
|
|
`(x1, x2,...,xn)`, where `x1`, `x2`,..., `xn` must have the same shape.
|
|
If any of `x1`, `x2`, ..., `xn` is a list or tuple, it is first
|
|
converted to an ndarray, otherwise it is left unchanged and if it isn't
|
|
an ndarray it is treated as a scalar.
|
|
|
|
Returns
|
|
-------
|
|
values : ndarray, compatible object
|
|
The values of the multidimensional polynomial on points formed with
|
|
triples of corresponding values from `x`, `y`, and `z`.
|
|
|
|
See Also
|
|
--------
|
|
chebval, chebgridnd, chebfitnd
|
|
"""
|
|
try:
|
|
xi = np.array(xi, copy=0)
|
|
except:
|
|
raise ValueError('x, y, z are incompatible')
|
|
chebval = np.polynomial.chebyshev.chebval
|
|
c = chebval(xi[0], c)
|
|
for x in xi[1:]:
|
|
c = chebval(x, c, tensor=False)
|
|
return c
|
|
|
|
|
|
def chebgridnd(c, *xi):
|
|
"""
|
|
Evaluate a N-D Chebyshev series on the Cartesian product of x1, x2,..., xn.
|
|
|
|
This function returns the values:
|
|
|
|
.. math:: p(a,b,...) = \\sum_{i,j,...} c_{i,j,...} * T_i(a) * T_j(b) * ...
|
|
|
|
where the points `(a, b, ...)` consist of all points formed by taking
|
|
`a` from `x1`, `b` from `x2`, and so on. The resulting points form
|
|
a grid with `x1` in the first dimension, `x2` in the second, and so on.
|
|
|
|
The parameters `x1`, `x2`, ... and `xn` are converted to arrays only if
|
|
they are tuples or a lists, otherwise they are treated as a scalars. In
|
|
either case, either `x1`, `x2`,... and `xn` or their elements must support
|
|
multiplication and addition both with themselves and with the elements
|
|
of `c`.
|
|
|
|
If `c` has fewer than N dimensions, ones are implicitly appended to
|
|
its shape to make it N-D. The shape of the result will be c.shape[3:] +
|
|
x1.shape + x2.shape + ... + xn.shape
|
|
|
|
Parameters
|
|
----------
|
|
c : array_like
|
|
Array of coefficients ordered so that the coefficients for terms of
|
|
degree i,j are contained in ``c[i,j]``. If `c` has dimension
|
|
greater than two the remaining indices enumerate multiple sets of
|
|
coefficients.
|
|
x1, x2,..., xn : ndarray, compatible object
|
|
1-D arrays representing the coordinates of a grid.
|
|
The N dimensional series is evaluated at the points in the
|
|
Cartesian product of `x1`, `x2`, ... and `xn`. If `xi`, is a
|
|
list or tuple, it is first converted to an ndarray, otherwise it is
|
|
left unchanged and, if it isn't an ndarray, it is treated as a
|
|
scalar.
|
|
|
|
Returns
|
|
-------
|
|
values : ndarray, compatible object
|
|
The values of the N dimensional polynomial at points in the Cartesian
|
|
product of `x1`, `x2`, ... and `xn`.
|
|
|
|
See Also
|
|
--------
|
|
chebval, chebvalnd, chebfitnd
|
|
"""
|
|
chebval = np.polynomial.chebyshev.chebval
|
|
for x in xi:
|
|
c = chebval(x, c)
|
|
return c
|
|
|
|
|
|
def test_chebfit1d():
|
|
def f(x):
|
|
return np.exp(-x**2)
|
|
|
|
# x = chebroot(n=64, kind=1)
|
|
# z = f(x)
|
|
|
|
c = chebfit(f, n=64)[::-1]
|
|
|
|
xi = np.linspace(-1, 1, 151)
|
|
zi = np.polynomial.chebyshev.chebval(xi, c)
|
|
|
|
# plt.plot(xi, zi,'.', xi, f(xi))
|
|
plt.semilogy(xi, np.abs(zi-f(xi)))
|
|
plt.show('hold')
|
|
|
|
|
|
def test_chebfit2d():
|
|
n = 3
|
|
xorder, yorder = n-1, n-1
|
|
x = chebroot(n=n, kind=1)
|
|
xgrid, ygrid = meshgrid(x, x)
|
|
|
|
def f(x, y):
|
|
return np.exp(-x**2-6*y**2)
|
|
zgrid = f(xgrid, ygrid)
|
|
|
|
# v2d = np.polynomial.chebyshev.chebvander2d(xgrid, ygrid,
|
|
# [xorder,yorder]).reshape((-1, (xorder+1)*(yorder+1)))
|
|
# coeff, residuals, rank, s = np.linalg.lstsq(v2d, zgrid.ravel())
|
|
# doeff = coeff.reshape(xorder+1,yorder+1)
|
|
_dcoeff2 = chebfitnd((xgrid, ygrid), zgrid, [xorder, yorder])
|
|
dcoeff = chebfit_dct(f, n=(xorder+1, yorder+1))
|
|
|
|
xi = np.linspace(-1, 1, 151)
|
|
Xi, Yi = np.meshgrid(xi, xi)
|
|
Zi = f(Xi, Yi)
|
|
zzi = chebvalnd(dcoeff, Xi, Yi)
|
|
_devi = Zi - zzi
|
|
# plot residuals
|
|
# zz = np.polynomial.chebyshev.chebval2d(xgrid, ygrid, dcoeff)
|
|
zz = chebvalnd(dcoeff, xgrid, ygrid)
|
|
dev = zgrid - zz
|
|
# plt.spy(np.abs(dcoeff)>1e-13)
|
|
plt.contourf(xgrid, ygrid, np.abs(dev))
|
|
# plt.contourf(Xi, Yi, np.abs(devi))
|
|
plt.colorbar()
|
|
# plt.semilogy(np.abs(devi.ravel()))
|
|
plt.show('hold')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
if False: # True: #
|
|
main()
|
|
else:
|
|
test_chebfit2d()
|
|
# test_docstrings()
|
|
# test_polydeg()
|