You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pywafo/wafo/integrate_oscillating.py

525 lines
16 KiB
Python

'''
Created on 20. aug. 2015
@author: pab
'''
from __future__ import division
import numpy as np
import warnings
import numdifftools as nd # @UnresolvedImport
import numdifftools.nd_algopy as nda # @UnresolvedImport
from numdifftools.limits import Limit # @UnresolvedImport
from numpy import linalg
from numpy.polynomial.chebyshev import chebval, Chebyshev
from numpy.polynomial import polynomial
from wafo.misc import piecewise, findcross, ecross
from collections import namedtuple
EPS = np.finfo(float).eps
_EPS = EPS
finfo = np.finfo(float)
_TINY = finfo.tiny
_HUGE = finfo.max
dea3 = nd.dea3
class PolyBasis(object):
@staticmethod
def derivative(t, k, n=1):
c = np.zeros(k + 1)
c[k] = 1
dc = polynomial.polyder(c, m=n)
return polynomial.polyval(t, dc)
@staticmethod
def eval(t, c):
return polynomial.polyval(t, c)
def __call__(self, t, k):
return t**k
poly_basis = PolyBasis()
class ChebyshevBasis(object):
@staticmethod
def derivative(t, k, n=1):
c = np.zeros(k + 1)
c[k] = 1
cheb = Chebyshev(c)
dcheb = cheb.deriv(m=n)
return chebval(t, dcheb.coef)
@staticmethod
def eval(t, c):
return chebval(t, c)
def __call__(self, t, k):
c = np.zeros(k + 1)
c[k] = 1
return chebval(t, c)
chebyshev_basis = ChebyshevBasis()
def richardson(Q, k):
# license BSD
# Richardson extrapolation with parameter estimation
c = np.real((Q[k - 1] - Q[k - 2]) / (Q[k] - Q[k - 1])) - 1.
# The lower bound 0.07 admits the singularity x.^-0.9
c = max(c, 0.07)
R = Q[k] + (Q[k] - Q[k - 1]) / c
return R
def evans_webster_weights(omega, gg, dgg, x, basis, *args, **kwds):
def Psi(t, k):
return dgg(t, *args, **kwds) * basis(t, k)
j_w = 1j * omega
nn = len(x)
A = np.zeros((nn, nn), dtype=complex)
F = np.zeros((nn,), dtype=complex)
dbasis = basis.derivative
lim_gg = Limit(gg)
b1 = np.exp(j_w*lim_gg(1, *args, **kwds))
if np.isnan(b1):
b1 = 0.0
a1 = np.exp(j_w*lim_gg(-1, *args, **kwds))
if np.isnan(a1):
a1 = 0.0
lim_Psi = Limit(Psi)
for k in range(nn):
F[k] = basis(1, k)*b1 - basis(-1, k)*a1
A[k] = (dbasis(x, k, n=1) + j_w * lim_Psi(x, k))
LS = linalg.lstsq(A, F)
return LS[0]
def osc_weights(omega, g, dg, x, basis, ab, *args, **kwds):
def gg(t):
return g(scale * t + offset, *args, **kwds)
def dgg(t):
return scale * dg(scale * t + offset, *args, **kwds)
w = []
for a, b in zip(ab[::2], ab[1::2]):
scale = (b - a) / 2
offset = (a + b) / 2
w.append(evans_webster_weights(omega, gg, dgg, x, basis))
return np.asarray(w).ravel()
class _Integrator(object):
info = namedtuple('info', ['error_estimate', 'n'])
def __init__(self, f, g, dg=None, a=-1, b=1, basis=chebyshev_basis, s=1,
precision=10, endpoints=True, full_output=False):
self.f = f
self.g = g
self.dg = nd.Derivative(g) if dg is None else dg
self.basis = basis
self.a = a
self.b = b
self.s = s
self.endpoints = endpoints
self.precision = precision
self.full_output = full_output
class QuadOsc(_Integrator):
def __init__(self, f, g, dg=None, a=-1, b=1, basis=chebyshev_basis, s=15,
precision=10, endpoints=False, full_output=False, maxiter=17):
self.maxiter = maxiter
super(QuadOsc, self).__init__(f, g, dg=dg, a=a, b=b, basis=basis, s=s,
precision=precision, endpoints=endpoints,
full_output=full_output)
@staticmethod
def _change_interval_to_0_1(f, g, dg, a, b):
def f1(t, *args, **kwds):
den = 1-t
return f(a + t / den, *args, **kwds) / den ** 2
def g1(t, *args, **kwds):
return g(a + t / (1 - t), *args, **kwds)
def dg1(t, *args, **kwds):
den = 1-t
return dg(a + t / den, *args, **kwds) / den ** 2
return f1, g1, dg1, 0., 1.
@staticmethod
def _change_interval_to_m1_0(f, g, dg, a, b):
def f2(t, *args, **kwds):
den = 1 + t
return f(b + t / den, *args, **kwds) / den ** 2
def g2(t, *args, **kwds):
return g(b + t / (1 + t), *args, **kwds)
def dg2(t, *args, **kwds):
den = 1 + t
return dg(b + t / den, *args, **kwds) / den ** 2
return f2, g2, dg2, -1.0, 0.0
@staticmethod
def _change_interval_to_m1_1(f, g, dg, a, b):
def f2(t, *args, **kwds):
den = (1 - t**2)
return f(t / den, *args, **kwds) * (1+t**2) / den ** 2
def g2(t, *args, **kwds):
den = (1 - t**2)
return g(t / den, *args, **kwds)
def dg2(t, *args, **kwds):
den = (1 - t**2)
return dg(t / den, *args, **kwds) * (1+t**2) / den ** 2
return f2, g2, dg2, -1., 1.
def _get_functions(self):
a, b = self.a, self.b
reverse = np.real(a) > np.real(b)
if reverse:
a, b = b, a
f, g, dg = self.f, self.g, self.dg
if a == b:
pass
elif np.isinf(a) | np.isinf(b):
# Check real limits
if ~np.isreal(a) | ~np.isreal(b) | np.isnan(a) | np.isnan(b):
raise ValueError('Infinite intervals must be real.')
# Change of variable
if np.isfinite(a) & np.isinf(b):
f, g, dg, a, b = self._change_interval_to_0_1(f, g, dg, a, b)
elif np.isinf(a) & np.isfinite(b):
f, g, dg, a, b = self._change_interval_to_m1_0(f, g, dg, a, b)
else: # -inf to inf
f, g, dg, a, b = self._change_interval_to_m1_1(f, g, dg, a, b)
return f, g, dg, a, b, reverse
def __call__(self, omega, *args, **kwds):
f, g, dg, a, b, reverse = self._get_functions()
val, err = self._quad_osc(f, g, dg, a, b, omega, *args, **kwds)
if reverse:
val = -val
if self.full_output:
return val, err
return val
@staticmethod
def _get_best_estimate(k, q0, q1, q2):
if k >= 5:
qv = np.hstack((q0[k], q1[k], q2[k]))
qw = np.hstack((q0[k - 1], q1[k - 1], q2[k - 1]))
elif k >= 3:
qv = np.hstack((q0[k], q1[k]))
qw = np.hstack((q0[k - 1], q1[k - 1]))
else:
qv = np.atleast_1d(q0[k])
qw = q0[k - 1]
errors = np.atleast_1d(abs(qv - qw))
j = np.nanargmin(errors)
return qv[j], errors[j]
def _extrapolate(self, k, q0, q1, q2):
if k >= 4:
q1[k], _err1 = dea3(q0[k - 2], q0[k - 1], q0[k])
q2[k], _err2 = dea3(q1[k - 2], q1[k - 1], q1[k])
elif k >= 2:
q1[k], _err1 = dea3(q0[k - 2], q0[k - 1], q0[k])
# # Richardson extrapolation
# if k >= 4:
# q1[k] = richardson(q0, k)
# q2[k] = richardson(q1, k)
# elif k >= 2:
# q1[k] = richardson(q0, k)
q, err = self._get_best_estimate(k, q0, q1, q2)
return q, err
def _quad_osc(self, f, g, dg, a, b, omega, *args, **kwds):
if a == b:
Q = b - a
err = b - a
return Q, err
abseps = 10**-self.precision
max_iter = self.maxiter
basis = self.basis
if self.endpoints:
xq = chebyshev_extrema(self.s)
else:
xq = chebyshev_roots(self.s)
# xq = tanh_sinh_open_nodes(self.s)
# One interval
hh = (b - a) / 2
x = (a + b) / 2 + hh * xq # Nodes
dtype = complex
Q0 = np.zeros((max_iter, 1), dtype=dtype) # Quadrature
Q1 = np.zeros((max_iter, 1), dtype=dtype) # First extrapolation
Q2 = np.zeros((max_iter, 1), dtype=dtype) # Second extrapolation
lim_f = Limit(f)
ab = np.hstack([a, b])
wq = osc_weights(omega, g, dg, xq, basis, ab, *args, **kwds)
Q0[0] = hh * np.sum(wq * lim_f(x, *args, **kwds))
# Successive bisection of intervals
nq = len(xq)
n = nq
for k in range(1, max_iter):
n += nq*2**k
hh = hh / 2
x = np.hstack([x + a, x + b]) / 2
ab = np.hstack([ab + a, ab + b]) / 2
wq = osc_weights(omega, g, dg, xq, basis, ab, *args, **kwds)
Q0[k] = hh * np.sum(wq * lim_f(x, *args, **kwds))
Q, err = self._extrapolate(k, Q0, Q1, Q2)
convergence = (err <= abseps) | ~np.isfinite(Q)
if convergence:
break
else:
warnings.warn('Max number of iterations reached '
'without convergence.')
if ~np.isfinite(Q):
warnings.warn('Integral approximation is Infinite or NaN.')
# The error estimate should not be zero
err += 2 * np.finfo(Q).eps
return Q, self.info(err, n)
def adaptive_levin_points(M, delta):
m = M - 1
prm = 0.5
while prm * m / delta >= 1:
delta = 2 * delta
k = np.arange(M)
x = piecewise([k < prm * m, k == np.ceil(prm * m)],
[-1 + k / delta, 0 * k, 1 - (m - k) / delta])
return x
def open_levin_points(M, delta):
return adaptive_levin_points(M+2, delta)[1:-1]
def chebyshev_extrema(M, delta=None):
k = np.arange(M)
x = np.cos(k * np.pi / (M-1))
return x
_EPS = np.finfo(float).eps
def tanh_sinh_nodes(M, delta=None, tol=_EPS):
tmax = np.arcsinh(np.arctanh(1-_EPS)*2/np.pi)
# tmax = 3.18
m = int(np.floor(-np.log2(tmax/max(M-1, 1)))) - 1
h = 2.0**-m
t = np.arange((M+1)//2+1)*h
x = np.tanh(np.pi/2*np.sinh(t))
k = np.flatnonzero(np.abs(x - 1) <= 10*tol)
y = x[:k[0]+1] if len(k) else x
return np.hstack((-y[:0:-1], y))
def tanh_sinh_open_nodes(M, delta=None, tol=_EPS):
return tanh_sinh_nodes(M+1, delta, tol)[1:-1]
def chebyshev_roots(M, delta=None):
k = np.arange(1, 2*M, 2) * 0.5
x = np.cos(k * np.pi / M)
return x
class AdaptiveLevin(_Integrator):
'''Return integral for the Levin-type and adaptive Levin-type methods'''
@staticmethod
def aLevinTQ(omega, ff, gg, dgg, x, s, basis, *args, **kwds):
def Psi(t, k):
return dgg(t, *args, **kwds) * basis(t, k)
j_w = 1j * omega
nu = np.ones((len(x),), dtype=int)
nu[0] = nu[-1] = s
S = np.cumsum(np.hstack((nu, 0)))
S[-1] = 0
nn = int(S[-2])
A = np.zeros((nn, nn), dtype=complex)
F = np.zeros((nn,))
dff = Limit(nda.Derivative(ff))
dPsi = Limit(nda.Derivative(Psi))
dbasis = basis.derivative
for r, t in enumerate(x):
for j in range(S[r - 1], S[r]):
order = ((j - S[r - 1]) % nu[r]) # derivative order
dff.f.n = order
F[j] = dff(t, *args, **kwds)
dPsi.f.n = order
for k in range(nn):
A[j, k] = (dbasis(t, k, n=order+1) + j_w * dPsi(t, k))
k1 = np.flatnonzero(1-np.isfinite(F))
if k1.size > 0: # Remove singularities
warnings.warn('Singularities detected! ')
A[k1] = 0
F[k1] = 0
LS = linalg.lstsq(A, F)
v = basis.eval([-1, 1], LS[0])
lim_gg = Limit(gg)
gb = np.exp(j_w * lim_gg(1, *args, **kwds))
if np.isnan(gb):
gb = 0
ga = np.exp(j_w * lim_gg(-1, *args, **kwds))
if np.isnan(ga):
ga = 0
NR = (v[1] * gb - v[0] * ga)
return NR
def _get_integration_limits(self, omega, args, kwds):
a, b = self.a, self.b
M = 30
ab = [a]
scale = (b - a) / 2
n = 30
x = np.linspace(a, b, n + 1)
dg_x = np.asarray([scale * omega * self.dg(xi, *args, **kwds)
for xi in x])
i10 = findcross(dg_x, M)
i1 = findcross(dg_x, 1)
i0 = findcross(dg_x, 0)
im1 = findcross(dg_x, -1)
im10 = findcross(dg_x, -M)
x10 = ecross(x, dg_x, i10, M) if len(i10) else ()
x1 = ecross(x, dg_x, i1, 1) if len(i1) else ()
x0 = ecross(x, dg_x, i0, 0) if len(i0) else ()
xm1 = ecross(x, dg_x, im1, -1) if len(im1) else ()
xm10 = ecross(x, dg_x, im10, -M) if len(im10) else ()
for i in np.unique(np.hstack((x10, x1, x0, xm1, xm10))):
if x[0] < i < x[n]:
ab.append(i)
ab.append(b)
return ab
def __call__(self, omega, *args, **kwds):
ab = self._get_integration_limits(omega, args, kwds)
s = self.s
val = 0
n = 0
err = 0
for ai, bi in zip(ab[:-1], ab[1:]):
vali, infoi = self._QaL(s, ai, bi, omega, *args, **kwds)
val += vali
err += infoi.error_estimate
n += infoi.n
if self.full_output:
info = self.info(err, n)
return val, info
return val
@staticmethod
def _get_num_points(s, prec, betam):
return 1 if s > 1 else int(prec / max(np.log10(betam + 1), 1) + 1)
def _QaL(self, s, a, b, omega, *args, **kwds):
'''if s>1,the integral is computed by Q_s^L'''
scale = (b - a) / 2
offset = (a + b) / 2
prec = self.precision # desired precision
def ff(t, *args, **kwds):
return scale * self.f(scale * t + offset, *args, **kwds)
def gg(t, *args, **kwds):
return self.g(scale * t + offset, *args, **kwds)
def dgg(t, *args, **kwds):
return scale * self.dg(scale * t + offset, *args, **kwds)
dg_a = abs(omega * dgg(-1, *args, **kwds))
dg_b = abs(omega * dgg(1, *args, **kwds))
g_a = abs(omega * gg(-1, *args, **kwds))
g_b = abs(omega * gg(1, *args, **kwds))
delta, alpha = min(dg_a, dg_b), min(g_a, g_b)
betam = delta # * scale
if self.endpoints:
if (delta < 10 or alpha <= 10 or s > 1):
points = chebyshev_extrema
else:
points = adaptive_levin_points
elif (delta < 10 or alpha <= 10 or s > 1):
points = chebyshev_roots
else:
points = open_levin_points # tanh_sinh_open_nodes
m = self._get_num_points(s, prec, betam)
abseps = 10*10.0**-prec
num_collocation_point_list = m*2**np.arange(1, 5) + 1
basis = self.basis
Q = 1e+300
n = 0
ni = 0
for num_collocation_points in num_collocation_point_list:
ni_old = ni
Q_old = Q
x = points(num_collocation_points, betam)
ni = len(x)
if ni > ni_old:
Q = self.aLevinTQ(omega, ff, gg, dgg, x, s, basis, *args,
**kwds)
n += ni
err = np.abs(Q-Q_old)
if err <= abseps:
break
info = self.info(err, n)
return Q, info
class EvansWebster(AdaptiveLevin):
'''Return integral for the Evans Webster method'''
def __init__(self, f, g, dg=None, a=-1, b=1, basis=chebyshev_basis, s=8,
precision=10, endpoints=False, full_output=False):
super(EvansWebster,
self).__init__(f, g, dg=dg, a=a, b=b, basis=basis, s=s,
precision=precision, endpoints=endpoints,
full_output=full_output)
def aLevinTQ(self, omega, ff, gg, dgg, x, s, basis, *args, **kwds):
w = evans_webster_weights(omega, gg, dgg, x, basis, *args, **kwds)
f = Limit(ff)(x, *args, **kwds)
NR = np.sum(f*w)
return NR
def _get_num_points(self, s, prec, betam):
return 8 if s > 1 else int(prec / max(np.log10(betam + 1), 1) + 1)
if __name__ == '__main__':
tanh_sinh_nodes(16)