from __future__ import division, print_function, absolute_import import inspect import warnings import numpy as np import numpy.testing as npt from scipy.lib._version import NumpyVersion from wafo import stats NUMPY_BELOW_1_7 = NumpyVersion(np.__version__) < '1.7.0' def check_normalization(distfn, args, distname): norm_moment = distfn.moment(0, *args) npt.assert_allclose(norm_moment, 1.0) # this is a temporary plug: either ncf or expect is problematic; # best be marked as a knownfail, but I've no clue how to do it. if distname == "ncf": atol, rtol = 1e-5, 0 else: atol, rtol = 1e-7, 1e-7 normalization_expect = distfn.expect(lambda x: 1, args=args) npt.assert_allclose(normalization_expect, 1.0, atol=atol, rtol=rtol, err_msg=distname, verbose=True) normalization_cdf = distfn.cdf(distfn.b, *args) npt.assert_allclose(normalization_cdf, 1.0) def check_moment(distfn, arg, m, v, msg): m1 = distfn.moment(1, *arg) m2 = distfn.moment(2, *arg) if not np.isinf(m): npt.assert_almost_equal(m1, m, decimal=10, err_msg=msg + ' - 1st moment') else: # or np.isnan(m1), npt.assert_(np.isinf(m1), msg + ' - 1st moment -infinite, m1=%s' % str(m1)) if not np.isinf(v): npt.assert_almost_equal(m2 - m1 * m1, v, decimal=10, err_msg=msg + ' - 2ndt moment') else: # or np.isnan(m2), npt.assert_(np.isinf(m2), msg + ' - 2nd moment -infinite, m2=%s' % str(m2)) def check_mean_expect(distfn, arg, m, msg): if np.isfinite(m): m1 = distfn.expect(lambda x: x, arg) npt.assert_almost_equal(m1, m, decimal=5, err_msg=msg + ' - 1st moment (expect)') def check_var_expect(distfn, arg, m, v, msg): if np.isfinite(v): m2 = distfn.expect(lambda x: x*x, arg) npt.assert_almost_equal(m2, v + m*m, decimal=5, err_msg=msg + ' - 2st moment (expect)') def check_skew_expect(distfn, arg, m, v, s, msg): if np.isfinite(s): m3e = distfn.expect(lambda x: np.power(x-m, 3), arg) npt.assert_almost_equal(m3e, s * np.power(v, 1.5), decimal=5, err_msg=msg + ' - skew') else: npt.assert_(np.isnan(s)) def check_kurt_expect(distfn, arg, m, v, k, msg): if np.isfinite(k): m4e = distfn.expect(lambda x: np.power(x-m, 4), arg) npt.assert_allclose(m4e, (k + 3.) * np.power(v, 2), atol=1e-5, rtol=1e-5, err_msg=msg + ' - kurtosis') else: npt.assert_(np.isnan(k)) def check_entropy(distfn, arg, msg): ent = distfn.entropy(*arg) npt.assert_(not np.isnan(ent), msg + 'test Entropy is nan') def check_private_entropy(distfn, args, superclass): # compare a generic _entropy with the distribution-specific implementation npt.assert_allclose(distfn._entropy(*args), superclass._entropy(distfn, *args)) def check_edge_support(distfn, args): # Make sure the x=self.a and self.b are handled correctly. x = [distfn.a, distfn.b] if isinstance(distfn, stats.rv_continuous): npt.assert_equal(distfn.cdf(x, *args), [0.0, 1.0]) npt.assert_equal(distfn.logcdf(x, *args), [-np.inf, 0.0]) npt.assert_equal(distfn.sf(x, *args), [1.0, 0.0]) npt.assert_equal(distfn.logsf(x, *args), [0.0, -np.inf]) if isinstance(distfn, stats.rv_discrete): x = [distfn.a-1, distfn.b] npt.assert_equal(distfn.ppf([0.0, 1.0], *args), x) npt.assert_equal(distfn.isf([0.0, 1.0], *args), x[::-1]) # out-of-bounds for isf & ppf npt.assert_(np.isnan(distfn.isf([-1, 2], *args)).all()) npt.assert_(np.isnan(distfn.ppf([-1, 2], *args)).all()) def check_named_args(distfn, x, shape_args, defaults, meths): ## Check calling w/ named arguments. # check consistency of shapes, numargs and _parse signature signature = inspect.getargspec(distfn._parse_args) npt.assert_(signature.varargs is None) npt.assert_(signature.keywords is None) npt.assert_(signature.defaults == defaults) shape_argnames = signature.args[1:-len(defaults)] # self, a, b, loc=0, scale=1 if distfn.shapes: shapes_ = distfn.shapes.replace(',', ' ').split() else: shapes_ = '' npt.assert_(len(shapes_) == distfn.numargs) npt.assert_(len(shapes_) == len(shape_argnames)) # check calling w/ named arguments shape_args = list(shape_args) vals = [meth(x, *shape_args) for meth in meths] npt.assert_(np.all(np.isfinite(vals))) names, a, k = shape_argnames[:], shape_args[:], {} while names: k.update({names.pop(): a.pop()}) v = [meth(x, *a, **k) for meth in meths] npt.assert_array_equal(vals, v) if 'n' not in k.keys(): # `n` is first parameter of moment(), so can't be used as named arg with warnings.catch_warnings(): warnings.simplefilter("ignore", UserWarning) npt.assert_equal(distfn.moment(1, *a, **k), distfn.moment(1, *shape_args)) # unknown arguments should not go through: k.update({'kaboom': 42}) npt.assert_raises(TypeError, distfn.cdf, x, **k)