from __future__ import absolute_import from scipy.stats._distn_infrastructure import * # @UnusedWildImport from scipy.stats._distn_infrastructure import (_skew, # @UnusedImport _kurtosis, _lazywhere, _ncx2_log_pdf, # @IgnorePep8 @UnusedImport _ncx2_pdf, _ncx2_cdf) # @UnusedImport @IgnorePep8 from .estimation import FitDistribution from ._constants import _XMAX _doc_default_example = """\ Examples -------- >>> from wafo.stats import %(name)s >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1) Calculate a few first moments: %(set_vals_stmt)s >>> mean, var, skew, kurt = %(name)s.stats(%(shapes)s, moments='mvsk') Display the probability density function (``pdf``): >>> x = np.linspace(%(name)s.ppf(0.01, %(shapes)s), ... %(name)s.ppf(0.99, %(shapes)s), 100) >>> ax.plot(x, %(name)s.pdf(x, %(shapes)s), ... 'r-', lw=5, alpha=0.6, label='%(name)s pdf') Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a "frozen" RV object holding the given parameters fixed. Freeze the distribution and display the frozen ``pdf``: >>> rv = %(name)s(%(shapes)s) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf') Check accuracy of ``cdf`` and ``ppf``: >>> vals = %(name)s.ppf([0.001, 0.5, 0.999], %(shapes)s) >>> np.allclose([0.001, 0.5, 0.999], %(name)s.cdf(vals, %(shapes)s)) True Generate random numbers: >>> r = %(name)s.rvs(%(shapes)s, size=1000) And compare the histogram: >>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show() Compare ML and MPS method >>> phat = %(name)s.fit2(R, method='ml');>>> phat.plotfitsummary() >>> plt.figure(plt.gcf().number+1) >>> phat2 = %(name)s.fit2(R, method='mps') >>> phat2.plotfitsummary(); plt.figure(plt.gcf().number+1) Fix loc=0 and estimate shapes and scale >>> phat3 = %(name)s.fit2(R, scale=1, floc=0, method='mps') >>> phat3.plotfitsummary(); plt.figure(plt.gcf().number+1) Accurate confidence interval with profile loglikelihood >>> lp = phat3.profile() >>> lp.plot() >>> pci = lp.get_bounds() """ # Frozen RV class class rv_frozen(object): ''' Frozen continous or discrete 1D Random Variable object (RV) Methods ------- rvs(size=1) Random variates. pdf(x) Probability density function. cdf(x) Cumulative density function. sf(x) Survival function (1-cdf --- sometimes more accurate). ppf(q) Percent point function (inverse of cdf --- percentiles). isf(q) Inverse survival function (inverse of sf). stats(moments='mv') Mean('m'), variance('v'), skew('s'), and/or kurtosis('k'). moment(n) n-th order non-central moment of distribution. entropy() (Differential) entropy of the RV. interval(alpha) Confidence interval with equal areas around the median. expect(func, lb, ub, conditional=False) Calculate expected value of a function with respect to the distribution. ''' def __init__(self, dist, *args, **kwds): # create a new instance self.dist = dist # .__class__(**dist._ctor_param) shapes, loc, scale = self.dist._parse_args(*args, **kwds) if isinstance(dist, rv_continuous): self.par = shapes + (loc, scale) else: # rv_discrete self.par = shapes + (loc,) self.a = self.dist.a self.b = self.dist.b self.shapes = self.dist.shapes # @property # def shapes(self): # return self.dist.shapes @property def random_state(self): return self.dist._random_state @random_state.setter def random_state(self, seed): self.dist._random_state = check_random_state(seed) def pdf(self, x): ''' Probability density function at x of the given RV.''' return self.dist.pdf(x, *self.par) def logpdf(self, x): return self.dist.logpdf(x, *self.par) def cdf(self, x): '''Cumulative distribution function at x of the given RV.''' return self.dist.cdf(x, *self.par) def logcdf(self, x): return self.dist.logcdf(x, *self.par) def ppf(self, q): '''Percent point function (inverse of cdf) at q of the given RV.''' return self.dist.ppf(q, *self.par) def isf(self, q): '''Inverse survival function at q of the given RV.''' return self.dist.isf(q, *self.par) def rvs(self, size=None, random_state=None): kwds = {'size': size, 'random_state': random_state} return self.dist.rvs(*self.par, **kwds) def sf(self, x): '''Survival function (1-cdf) at x of the given RV.''' return self.dist.sf(x, *self.par) def logsf(self, x): return self.dist.logsf(x, *self.par) def stats(self, moments='mv'): ''' Some statistics of the given RV''' kwds = dict(moments=moments) return self.dist.stats(*self.par, **kwds) def median(self): return self.dist.median(*self.par) def mean(self): return self.dist.mean(*self.par) def var(self): return self.dist.var(*self.par) def std(self): return self.dist.std(*self.par) def moment(self, n): return self.dist.moment(n, *self.par) def entropy(self): return self.dist.entropy(*self.par) def pmf(self, k): '''Probability mass function at k of the given RV''' return self.dist.pmf(k, *self.par) def logpmf(self, k): return self.dist.logpmf(k, *self.par) def interval(self, alpha): return self.dist.interval(alpha, *self.par) def expect(self, func=None, lb=None, ub=None, conditional=False, **kwds): if isinstance(self.dist, rv_continuous): a, loc, scale = self.par[:-2], self.par[:-2], self.par[-1] return self.dist.expect(func, a, loc, scale, lb, ub, conditional, **kwds) a, loc = self.par[:-1], self.par[-1] if kwds: raise ValueError("Discrete expect does not accept **kwds.") return self.dist.expect(func, a, loc, lb, ub, conditional) def freeze(self, *args, **kwds): """Freeze the distribution for the given arguments. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution. Should include all the non-optional arguments, may include ``loc`` and ``scale``. Returns ------- rv_frozen : rv_frozen instance The frozen distribution. """ return rv_frozen(self, *args, **kwds) def link(self, x, logSF, theta, i): ''' Return theta[i] as function of quantile, survival probability and theta[j] for j!=i. Parameters ---------- x : quantile logSF : logarithm of the survival probability theta : list all distribution parameters including location and scale. Returns ------- theta[i] : real scalar fixed distribution parameter theta[i] as function of x, logSF and theta[j] where j != i. LINK is a function connecting the fixed distribution parameter theta[i] with the quantile (x) and the survival probability (SF) and the remaining free distribution parameters theta[j] for j!=i, i.e.: theta[i] = link(x, logSF, theta, i), where logSF = log(Prob(X>x; theta)). See also estimation.Profile ''' return self._link(x, logSF, theta, i) def _link(self, x, logSF, theta, i): msg = ('Link function not implemented for the %s distribution' % self.name) raise NotImplementedError(msg) def nlogps(self, theta, x): """ Moran's negative log Product Spacings statistic where theta are the parameters (including loc and scale) Note the data in x must be sorted References ----------- R. C. H. Cheng; N. A. K. Amin (1983) "Estimating Parameters in Continuous Univariate Distributions with a Shifted Origin.", Journal of the Royal Statistical Society. Series B (Methodological), Vol. 45, No. 3. (1983), pp. 394-403. R. C. H. Cheng; M. A. Stephens (1989) "A Goodness-Of-Fit Test Using Moran's Statistic with Estimated Parameters", Biometrika, 76, 2, pp 385-392 Wong, T.S.T. and Li, W.K. (2006) "A note on the estimation of extreme value distributions using maximum product of spacings.", IMS Lecture Notes Monograph Series 2006, Vol. 52, pp. 272-283 """ try: loc = theta[-2] scale = theta[-1] args = tuple(theta[:-2]) except IndexError: raise ValueError("Not enough input arguments.") if not self._argcheck(*args) or scale <= 0: return inf x = asarray((x - loc) / scale) cond0 = (x <= self.a) | (self.b <= x) Nbad = np.sum(cond0) if Nbad > 0: x = argsreduce(~cond0, x)[0] lowertail = True if lowertail: prb = np.hstack((0.0, self.cdf(x, *args), 1.0)) dprb = np.diff(prb) else: prb = np.hstack((1.0, self.sf(x, *args), 0.0)) dprb = -np.diff(prb) logD = log(dprb) dx = np.diff(x, axis=0) tie = (dx == 0) if any(tie): # TODO : implement this method for treating ties in data: # Assume measuring error is delta. Then compute # yL = F(xi-delta,theta) # yU = F(xi+delta,theta) # and replace # logDj = log((yU-yL)/(r-1)) for j = i+1,i+2,...i+r-1 # The following is OK when only minimization of T is wanted i_tie, = np.nonzero(tie) tiedata = x[i_tie] logD[i_tie + 1] = log(self._pdf(tiedata, *args)) - log(scale) finiteD = np.isfinite(logD) nonfiniteD = 1 - finiteD Nbad += np.sum(nonfiniteD, axis=0) if Nbad > 0: T = -np.sum(logD[finiteD], axis=0) + 100.0 * np.log(_XMAX) * Nbad else: T = -np.sum(logD, axis=0) return T def _reduce_func(self, args, options): # First of all, convert fshapes params to fnum: eg for stats.beta, # shapes='a, b'. To fix `a`, can specify either `f1` or `fa`. # Convert the latter into the former. kwds = options.copy() if self.shapes: shapes = self.shapes.replace(',', ' ').split() for j, s in enumerate(shapes): val = kwds.pop('f' + s, None) or kwds.pop('fix_' + s, None) if val is not None: key = 'f%d' % j if key in kwds: raise ValueError("Duplicate entry for %s." % key) else: kwds[key] = val args = list(args) Nargs = len(args) fixedn = [] names = ['f%d' % n for n in range(Nargs - 2)] + ['floc', 'fscale'] x0 = [] for n, key in enumerate(names): if key in kwds: fixedn.append(n) args[n] = kwds.pop(key) else: x0.append(args[n]) method = kwds.pop('method', 'ml').lower() if method.startswith('mps'): fitfun = self.nlogps else: fitfun = self._penalized_nnlf if len(fixedn) == 0: func = fitfun restore = None else: if len(fixedn) == Nargs: raise ValueError( "All parameters fixed. There is nothing to optimize.") def restore(args, theta): # Replace with theta for all numbers not in fixedn # This allows the non-fixed values to vary, but # we still call self.nnlf with all parameters. i = 0 for n in range(Nargs): if n not in fixedn: args[n] = theta[i] i += 1 return args def func(theta, x): newtheta = restore(args[:], theta) return fitfun(newtheta, x) return x0, func, restore, args def fit(self, data, *args, **kwargs): """ Return ML/MPS estimate for shape, location, and scale parameters from data. ML and MPS stands for Maximum Likelihood and Maximum Product Spacing, respectively. Starting estimates for the fit are given by input arguments; for any arguments not provided with starting estimates, ``self._fitstart(data)`` is called to generate such. One can hold some parameters fixed to specific values by passing in keyword arguments ``f0``, ``f1``, ..., ``fn`` (for shape parameters) and ``floc`` and ``fscale`` (for location and scale parameters, respectively). Parameters ---------- data : array_like Data to use in calculating the MLEs. args : floats, optional Starting value(s) for any shape-characterizing arguments (those not provided will be determined by a call to ``_fitstart(data)``). No default value. kwds : floats, optional Starting values for the location and scale parameters; no default. Special keyword arguments are recognized as holding certain parameters fixed: - f0...fn : hold respective shape parameters fixed. Alternatively, shape parameters to fix can be specified by name. For example, if ``self.shapes == "a, b"``, ``fa``and ``fix_a`` are equivalent to ``f0``, and ``fb`` and ``fix_b`` are equivalent to ``f1``. - floc : hold location parameter fixed to specified value. - fscale : hold scale parameter fixed to specified value. - optimizer : The optimizer to use. The optimizer must take ``func``, and starting position as the first two arguments, plus ``args`` (for extra arguments to pass to the function to be optimized) and ``disp=0`` to suppress output as keyword arguments. Returns ------- shape, loc, scale : tuple of floats MLEs for any shape statistics, followed by those for location and scale. Notes ----- This fit is computed by maximizing a log-likelihood function, with penalty applied for samples outside of range of the distribution. The returned answer is not guaranteed to be the globally optimal MLE, it may only be locally optimal, or the optimization may fail altogether. Examples -------- Generate some data to fit: draw random variates from the `beta` distribution >>> from wafo.stats import beta >>> a, b = 1., 2. >>> x = beta.rvs(a, b, size=1000) Now we can fit all four parameters (``a``, ``b``, ``loc`` and ``scale``): >>> a1, b1, loc1, scale1 = beta.fit(x) We can also use some prior knowledge about the dataset: let's keep ``loc`` and ``scale`` fixed: >>> a1, b1, loc1, scale1 = beta.fit(x, floc=0, fscale=1) >>> loc1, scale1 (0, 1) We can also keep shape parameters fixed by using ``f``-keywords. To keep the zero-th shape parameter ``a`` equal 1, use ``f0=1`` or, equivalently, ``fa=1``: >>> a1, b1, loc1, scale1 = beta.fit(x, fa=1, floc=0, fscale=1) >>> a1 1 """ Narg = len(args) if Narg > self.numargs: raise TypeError("Too many input arguments.") kwds = kwargs.copy() start = [None]*2 if (Narg < self.numargs) or not ('loc' in kwds and 'scale' in kwds): # get distribution specific starting locations start = self._fitstart(data) args += start[Narg:-2] loc = kwds.pop('loc', start[-2]) scale = kwds.pop('scale', start[-1]) args += (loc, scale) x0, func, restore, args = self._reduce_func(args, kwds) optimizer = kwds.pop('optimizer', optimize.fmin) # convert string to function in scipy.optimize if not callable(optimizer) and isinstance(optimizer, string_types): if not optimizer.startswith('fmin_'): optimizer = "fmin_"+optimizer if optimizer == 'fmin_': optimizer = 'fmin' try: optimizer = getattr(optimize, optimizer) except AttributeError: raise ValueError("%s is not a valid optimizer" % optimizer) # by now kwds must be empty, since everybody took what they needed if kwds: raise TypeError("Unknown arguments: %s." % kwds) vals = optimizer(func, x0, args=(ravel(data),), disp=0) if restore is not None: vals = restore(args, vals) vals = tuple(vals) return vals def fit2(self, data, *args, **kwds): ''' Return Maximum Likelihood or Maximum Product Spacing estimator object Parameters ---------- data : array-like Data to use in calculating the ML or MPS estimators args : optional Starting values for any shape arguments (those not specified will be determined by dist._fitstart(data)) kwds : loc, scale Starting values for the location and scale parameters Special keyword arguments are recognized as holding certain parameters fixed: f0..fn : hold respective shape paramters fixed floc : hold location parameter fixed to specified value fscale : hold scale parameter fixed to specified value method : of estimation. Options are 'ml' : Maximum Likelihood method (default) 'mps': Maximum Product Spacing method alpha : scalar, optional Confidence coefficent (default=0.05) search : bool If true search for best estimator (default), otherwise return object with initial distribution parameters copydata : bool If true copydata (default) optimizer : The optimizer to use. The optimizer must take func, and starting position as the first two arguments, plus args (for extra arguments to pass to the function to be optimized) and disp=0 to suppress output as keyword arguments. Return ------ phat : FitDistribution object Fitted distribution object with following member variables: LLmax : loglikelihood function evaluated using par LPSmax : log product spacing function evaluated using par pvalue : p-value for the fit par : distribution parameters (fixed and fitted) par_cov : covariance of distribution parameters par_fix : fixed distribution parameters par_lower : lower (1-alpha)% confidence bound for the parameters par_upper : upper (1-alpha)% confidence bound for the parameters Note ---- `data` is sorted using this function, so if `copydata`==False the data in your namespace will be sorted as well. ''' return FitDistribution(self, data, args, **kwds) rv_generic.freeze = freeze rv_discrete.freeze = freeze rv_continuous.freeze = freeze rv_continuous.link = link rv_continuous._link = _link rv_continuous.nlogps = nlogps rv_continuous._reduce_func = _reduce_func rv_continuous.fit = fit rv_continuous.fit2 = fit2