PROGRAM sp2tthpdf1
C***********************************************************************
C This program computes: *
C *
C density of T= T_1+T_2 in a gaussian process i.e. *
C *
C wavelengthes for crests
h2 *
C *
C Sylvie and Igor 7 dec. 1999 *
C***********************************************************************
use GLOBALDATA, only : Nt,Nj,Nd,Nc,Ntd,Ntdc,NI,Mb,
& NIT,Nx,TWOPI,XSPLT,SCIS,NSIMmax,COV
use rind
IMPLICIT NONE
double precision, dimension(:,:),allocatable :: BIG
double precision, dimension(:,:),allocatable :: ansr
double precision, dimension(: ),allocatable :: ex,CY1,CY2
double precision, dimension(:,:),allocatable :: xc
double precision, dimension(: ),allocatable :: fxind,h1,h2
double precision, dimension(: ),allocatable :: hh1,hh2
double precision, dimension(: ),allocatable :: R0,R1,R2
double precision ::CC,U,XddInf,XdInf,XtInf
double precision, dimension(:,:),allocatable :: a_up,a_lo
integer , dimension(: ),allocatable :: seed
integer ,dimension(7) :: indI
integer :: Ntime,tn,ts,speed,ph,seed1,seed_size,Nx1,Nx2,N0
integer :: icy,icy2
double precision :: ds,dT ! lag spacing for covariances
! DIGITAL:
! f90 -g2 -C -automatic -o ~/WAT/V4/sp2tthpdf1.exe rind49.f sp2tthpdf1.f
! SOLARIS:
!f90 -g -O -w3 -Bdynamic -fixed -o ../sp2tthpdf.exe rind49.f sp2tthpdf1.f
!print *,'enter sp2thpdf'
CALL INIT_LEVELS(U,Ntime,N0,NIT,speed,SCIS,seed1,Nx1,Nx2,dT)
!print *,'U,Ntime,NIT,speed,SCIS,seed1,Nx,dT'
!print *,U,Ntime,NIT,speed,SCIS,seed1,Nx,dT
!Nx1=1
!Nx2=1
Nx=Nx1*Nx2
!print *,'NN',Nx1,Nx2,Nx
!XSPLT=1.5d0
if (SCIS.GT.0) then
allocate(COV(1:Nx))
call random_seed(SIZE=seed_size)
allocate(seed(seed_size))
call random_seed(GET=seed(1:seed_size)) ! get current seed
seed(1)=seed1 ! change seed
call random_seed(PUT=seed(1:seed_size))
deallocate(seed)
endif
CALL INITDATA(speed)
!print *,ntime,speed,u,NIT
allocate(R0(1:Ntime+1))
allocate(R1(1:Ntime+1))
allocate(R2(1:Ntime+1))
allocate(h1(1:Nx1))
allocate(h2(1:Nx2))
CALL INIT_AMPLITUDES(h1,Nx1,h2,Nx2)
CALL INIT_COVARIANCES(Ntime,R0,R1,R2)
allocate(hh1(1:Nx))
allocate(hh2(1:Nx))
!h transformation
do icy=1,Nx1
do icy2=1,Nx2
hh1((icy-1)*Nx2+icy2)=h1(icy);
hh2((icy-1)*Nx2+icy2)=h2(icy2);
enddo
enddo
Nj=0
indI(1)=0
C ***** The bound 'infinity' is set to 10*sigma *****
XdInf=10.d0*SQRT(-R2(1))
XtInf=10.d0*SQRT(R0(1))
!h1(1)=XtInf
!h2(1)=XtInf
! normalizing constant
CC=TWOPI*SQRT(-R0(1)/R2(1))*exp(u*u/(2.d0*R0(1)) )
allocate(CY1(1:Nx))
allocate(CY2(1:Nx))
do icy=1,Nx
CY1(icy)=exp(-0.5*hh1(icy)*hh1(icy)/100)/(10*sqrt(twopi))
CY2(icy)=exp(-0.5*hh2(icy)*hh2(icy)/100)/(10*sqrt(twopi))
enddo
!print *,CY1
allocate(ansr(1:Ntime,1:Nx))
ansr=0.d0
allocate(fxind(1:Nx))
fxind=0.d0
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Y={X(t2)..,X(ts),..X(tn-1)||X'(ts) X'(t1) X'(tn)||Y1 Y2 X(ts) X(t1) X(tn)} !!
! = [Xt Xd Xc] !!
! !!
! Nt=tn-2, Nd=3, Nc=2+3 !!
! !!
! Xt= contains Nt time points in the indicator function !!
! Xd= " Nd derivatives !!
! Xc= " Nc variables to condition on !!
! (Y1,Y2) dummy variables ind. of all other v. inputing h1,h2 into rindd !!
! !!
! There are 6 ( NI=7) regions with constant bariers: !!
! (indI(1)=0); for i\in (indI(1),indI(2)] u0 (deriv. X'(t1)) !!
! (indI(6)=Nt+2); for i\in (indI(6),indI(7)], Y(i)>0 (deriv. X'(tn)) !!
! (indI(7)=Nt+3); NI=7. !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
NI=7; Nd=3
Nc=5; Mb=3
allocate(a_up(1:Mb,1:(NI-1)))
allocate(a_lo(1:Mb,1:(NI-1)))
a_up=0.d0
a_lo=0.d0
allocate(BIG(1:(Ntime+Nc+1),1:(Ntime+Nc+1)))
ALLOCATE(xc(1:Nc,1:Nx))
allocate(ex(1:(Ntime+Nc+1)))
!print *,size(ex),Ntime
ex=0.d0
!print *,size(ex),ex
xc(1,1:Nx)=hh1(1:Nx)
xc(2,1:Nx)=hh2(1:Nx)
xc(3,1:Nx)=u
xc(4,1:Nx)=u
xc(5,1:Nx)=u
! upp- down- upp-crossings at t1,ts,tn
a_lo(1,1)=u
a_up(1,2)=XtInf ! X(ts) is redundant
a_lo(1,2)=-Xtinf
a_up(1,3)=u
a_lo(1,4)=-XdInf
a_up(1,5)= XdInf
a_up(1,6)= XdInf
a_up(2,1)=1.d0
a_lo(3,3)=1.d0 !signe a voir!!!!!!
! print *,a_up
! print *,a_lo
do tn=N0,Ntime,1
! do tn=Ntime,Ntime,1
Ntd=tn+1
Nt=Ntd-Nd
Ntdc=Ntd+Nc
indI(4)=Nt
indI(5)=Nt+1
indI(6)=Nt+2
indI(7)=Ntd
if (SCIS.gt.0) then
if (SCIS.EQ.2) then
Nj=max(Nt,0)
else
Nj=min(max(Nt-5, 0),0)
endif
endif
do ts=3,tn-2
!print *,'ts,tn' ,ts,tn,Ntdc
CALL COV_INPUT(Big(1:Ntdc,1:Ntdc),tn,ts,R0,R1,R2)!positive wave period
indI(2)=ts-2
indI(3)=ts-1
CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex(1:Ntdc),
& xc,indI,a_lo,a_up)
ds=dt
do icy=1,Nx
! ansr(tn,:)=ansr(tn,:)+fxind*CC*ds./(CY1.*CY2)
ansr(tn,icy)=ansr(tn,icy)+fxind(icy)*CC*ds/(CY1(icy)*CY2(icy))
enddo
enddo ! ts
print *,'Ready: ',tn,' of ',Ntime
enddo !tn
!print *,'ansr',ansr
300 open (unit=11, file='dens.out', STATUS='unknown')
!print *, ansr
do ts=1,Ntime
do ph=1,Nx
write(11,*) ansr(ts,ph),hh1(ph),hh2(ph)
! write(11,111) ansr(ts,ph)
enddo
enddo
!111 FORMAT(2x,F12.8)
close(11)
900 deallocate(big)
deallocate(fxind)
deallocate(ansr)
deallocate(xc)
deallocate(ex)
deallocate(R0)
deallocate(R1)
deallocate(R2)
if (allocated(COV) ) then
deallocate(COV)
endif
deallocate(h1)
deallocate(h2)
deallocate(hh1)
deallocate(hh2)
deallocate(a_up)
deallocate(a_lo)
stop
!return
CONTAINS
SUBROUTINE INIT_LEVELS
& (U,Ntime,N0,NIT,speed,SCIS,seed1,Nx1,Nx2,dT)
IMPLICIT NONE
integer, intent(out):: Ntime,N0,NIT,speed,Nx1,Nx2,SCIS,seed1
double precision ,intent(out) :: U,dT
OPEN(UNIT=14,FILE='reflev.in',STATUS= 'UNKNOWN')
READ (14,*) U
READ (14,*) Ntime
READ (14,*) N0
READ (14,*) NIT
READ (14,*) speed
READ (14,*) SCIS
READ (14,*) seed1
READ (14,*) Nx1,Nx2
READ (14,*) dT
if (Ntime.lt.3) then
print *,'The number of wavelength points is too small, stop'
stop
end if
CLOSE(UNIT=14)
RETURN
END SUBROUTINE INIT_LEVELS
C******************************************************
SUBROUTINE INIT_AMPLITUDES(h1,Nx1,h2,Nx2)
IMPLICIT NONE
double precision, dimension(:), intent(out) :: h1,h2
integer, intent(in) :: Nx1,Nx2
integer :: ix
OPEN(UNIT=4,FILE='h.in',STATUS= 'UNKNOWN')
C
C Reading in amplitudes
C
do ix=1,Nx1
READ (4,*) H1(ix)
enddo
do ix=1,Nx2
READ (4,*) H2(ix)
enddo
CLOSE(UNIT=4)
RETURN
END SUBROUTINE INIT_AMPLITUDES
C**************************************************
C***********************************************************************
C***********************************************************************
SUBROUTINE INIT_COVARIANCES(Ntime,R0,R1,R2)
IMPLICIT NONE
double precision, dimension(:),intent(out) :: R0,R1,R2
integer,intent(in) :: Ntime
integer :: i
open (unit=1, file='Cd0.in',STATUS='unknown')
open (unit=2, file='Cd1.in',STATUS='unknown')
open (unit=3, file='Cd2.in',STATUS='unknown')
do i=1,Ntime
read(1,*) R0(i)
read(2,*) R1(i)
read(3,*) R2(i)
enddo
close(1)
close(2)
close(3)
return
END SUBROUTINE INIT_COVARIANCES
C***********************************************************************
C***********************************************************************
C**********************************************************************
SUBROUTINE COV_INPUT(BIG,tn,ts, R0,R1,R2)
IMPLICIT NONE
double precision, dimension(:,:),intent(inout) :: BIG
double precision, dimension(:),intent(in) :: R0,R1,R2
integer ,intent(in) :: tn,ts
integer :: i,j,Ntd1,N !=Ntdc
double precision :: tmp
! the order of the variables in the covariance matrix
! are organized as follows:
!
! ||X(t2)..X(ts),..X(tn-1)||X'(ts) X'(t1) X'(tn)||Y1 Y2 X(ts) X(t1) X(tn)||
! = [Xt Xd Xc]
! where
!
! Xt= time points in the indicator function
! Xd= derivatives
! Xc=variables to condition on
! Computations of all covariances follows simple rules: Cov(X(t),X(s))=r(t,s),
! then Cov(X'(t),X(s))=dr(t,s)/dt. Now for stationary X(t) we have
! a function r(tau) such that Cov(X(t),X(s))=r(s-t) (or r(t-s) will give the same result).
!
! Consequently Cov(X'(t),X(s)) = -r'(s-t) = -sign(s-t)*r'(|s-t|)
! Cov(X'(t),X'(s)) = -r''(s-t) = -r''(|s-t|)
! Cov(X''(t),X'(s)) = r'''(s-t) = sign(s-t)*r'''(|s-t|)
! Cov(X''(t),X(s)) = r''(s-t) = r''(|s-t|)
! Cov(X''(t),X''(s)) = r''''(s-t) = r''''(|s-t|)
Ntd1=tn+1
N=Ntd1+Nc
do i=1,tn-2
!cov(Xt)
do j=i,tn-2
BIG(i,j) = R0(j-i+1) ! cov(X(ti+1),X(tj+1))
enddo
!cov(Xt,Xc)
BIG(i ,Ntd1+1) = 0.d0 !cov(X(ti+1),Y1)
BIG(i ,Ntd1+2) = 0.d0 !cov(X(ti+1),Y2)
BIG(i ,Ntd1+4) = R0(i+1) !cov(X(ti+1),X(t1))
BIG(tn-1-i ,Ntd1+5) = R0(i+1) !cov(X(t.. ),X(tn))
!Cov(Xt,Xd)=cov(X(ti+1),x(tj)
BIG(i,Ntd1-1) =-R1(i+1) !cov(X(ti+1),X'(t1))
BIG(tn-1-i,Ntd1)= R1(i+1) !cov(X(ti+1),X'(tn))
enddo
!cov(Xd)
BIG(Ntd1 ,Ntd1 ) = -R2(1)
BIG(Ntd1-1,Ntd1 ) = -R2(tn) !cov(X'(t1),X'(tn))
BIG(Ntd1-1,Ntd1-1) = -R2(1)
BIG(Ntd1-2,Ntd1-1) = -R2(ts) !cov(X'(ts),X'(t1))
BIG(Ntd1-2,Ntd1-2) = -R2(1)
BIG(Ntd1-2,Ntd1 ) = -R2(tn+1-ts) !cov(X'(ts),X'(tn))
!cov(Xc)
BIG(Ntd1+1,Ntd1+1) = 100.d0 ! cov(Y1 Y1)
BIG(Ntd1+1,Ntd1+2) = 0.d0 ! cov(Y1 Y2)
BIG(Ntd1+1,Ntd1+3) = 0.d0 ! cov(Y1 X(ts))
BIG(Ntd1+1,Ntd1+4) = 0.d0 ! cov(Y1 X(t1))
BIG(Ntd1+1,Ntd1+5) = 0.d0 ! cov(Y1 X(tn))
BIG(Ntd1+2,Ntd1+2) = 100.d0 ! cov(Y2 Y2)
BIG(Ntd1+2,Ntd1+3) = 0.d0 ! cov(Y2 X(ts))
BIG(Ntd1+2,Ntd1+4) = 0.d0 ! cov(Y2 X(t1))
BIG(Ntd1+2,Ntd1+5) = 0.d0 ! cov(Y2 X(tn))
BIG(Ntd1+3,Ntd1+3) = R0(1) ! cov(X(ts),X (ts)
BIG(Ntd1+3,Ntd1+4) = R0(ts) ! cov(X(ts),X (t1))
BIG(Ntd1+3,Ntd1+5) = R0(tn+1-ts) ! cov(X(ts),X (tn))
BIG(Ntd1+4,Ntd1+4) = R0(1) ! cov(X(t1),X (t1))
BIG(Ntd1+4,Ntd1+5) = R0(tn) ! cov(X(t1),X (tn))
BIG(Ntd1+5,Ntd1+5) = R0(1) ! cov(X(tn),X (tn))
!cov(Xd,Xc)
BIG(Ntd1 ,Ntd1+1) = 0.d0 !cov(X'(tn),Y1)
BIG(Ntd1 ,Ntd1+2) = 0.d0 !cov(X'(tn),Y2)
BIG(Ntd1-1 ,Ntd1+1) = 0.d0 !cov(X'(t1),Y1)
BIG(Ntd1-1 ,Ntd1+2) = 0.d0 !cov(X'(t1),Y2)
BIG(Ntd1-2 ,Ntd1+1) = 0.d0 !cov(X'(ts),Y1)
BIG(Ntd1-2 ,Ntd1+2) = 0.d0 !cov(X'(ts),Y2)
BIG(Ntd1 ,Ntd1+4) = R1(tn) !cov(X'(tn),X(t1))
BIG(Ntd1 ,Ntd1+5) = 0.d0 !cov(X'(tn),X(tn))
BIG(Ntd1-1,Ntd1+4) = 0.d0 !cov(X'(t1),X(t1))
BIG(Ntd1-1,Ntd1+5) =-R1(tn) !cov(X'(t1),X(tn))
BIG(Ntd1 ,Ntd1+3) = R1(tn+1-ts) !cov(X'(tn),X (ts))
BIG(Ntd1-1,Ntd1+3) =-R1(ts) !cov(X'(t1),X (ts))
BIG(Ntd1-2,Ntd1+3) = 0.d0 !cov(X'(ts),X (ts)
BIG(Ntd1-2,Ntd1+4) = R1(ts) !cov(X'(ts),X (t1))
BIG(Ntd1-2,Ntd1+5) = -R1(tn+1-ts) !cov(X'(ts),X (tn))
do i=1,tn-2
j=abs(i+1-ts)
!cov(Xt,Xc)
BIG(i,Ntd1+3) = R0(j+1) !cov(X(ti+1),X(ts))
!Cov(Xt,Xd)
if ((i+1-ts).lt.0) then
BIG(i,Ntd1-2) = R1(j+1)
else !cov(X(ti+1),X'(ts))
BIG(i,Ntd1-2) = -R1(j+1)
endif
enddo
! make lower triangular part equal to upper
do j=1,N-1
do i=j+1,N
tmp =BIG(j,i)
BIG(i,j)=tmp
enddo
enddo
C write (*,10) ((BIG(j,i),i=N+1,N+6),j=N+1,N+6)
C 10 format(6F8.4)
RETURN
END SUBROUTINE COV_INPUT
SUBROUTINE COV_INPUT2(BIG,pt, R0,R1,R2)
IMPLICIT NONE
double precision, dimension(:,:), intent(out) :: BIG
double precision, dimension(:), intent(in) :: R0,R1,R2
integer :: pt,i,j
! the order of the variables in the covariance matrix
! are organized as follows;
! X(t2)...X(tn-1) X'(t1) X'(tn) X(t1) X(tn) = [Xt Xd Xc]
!
! where Xd is the derivatives
!
! Xt= time points in the indicator function
! Xd= derivatives
! Xc=variables to condition on
!cov(Xc)
BIG(pt+2,pt+2) = R0(1)
BIG(pt+1,pt+1) = R0(1)
BIG(pt+1,pt+2) = R0(pt)
!cov(Xd)
BIG(pt,pt) = -R2(1)
BIG(pt-1,pt-1) = -R2(1)
BIG(pt-1,pt) = -R2(pt)
!cov(Xd,Xc)
BIG(pt,pt+2) = 0.d0
BIG(pt,pt+1) = R1(pt)
BIG(pt-1,pt+2) = -R1(pt)
BIG(pt-1,pt+1) = 0.d0
if (pt.GT.2) then
!cov(Xt)
do i=1,pt-2
do j=i,pt-2
BIG(i,j) = R0(j-i+1)
enddo
enddo
!cov(Xt,Xc)
do i=1,pt-2
BIG(i,pt+1) = R0(i+1)
BIG(pt-1-i,pt+2) = R0(i+1)
enddo
!Cov(Xt,Xd)=cov(X(ti+1),x(tj))
do i=1,pt-2
BIG(i,pt-1) = -R1(i+1)
BIG(pt-1-i,pt)= R1(i+1)
enddo
endif
! make lower triangular part equal to upper
do j=1,pt+1
do i=j+1,pt+2
BIG(i,j)=BIG(j,i)
enddo
enddo
C write (*,10) ((BIG(j,i),i=N+1,N+6),j=N+1,N+6)
C 10 format(6F8.4)
RETURN
END SUBROUTINE COV_INPUT2
END PROGRAM sp2tthpdf1