# -*- coding:utf-8 -*- """ Created on 5. aug. 2010 @author: pab """ import wafo.data # @UnusedImport import numpy as np # @UnusedImport def test_timeseries(): ''' >>> import wafo.data >>> import wafo.objects as wo >>> x = wafo.data.sea() >>> ts = wo.mat2timeseries(x) >>> ts.sampling_period() 0.25 Estimate spectrum >>> S = ts.tospecdata() >>> S.data[:10] array([ 0.00913087, 0.00881073, 0.00791944, 0.00664244, 0.00522429, 0.00389816, 0.00282753, 0.00207843, 0.00162678, 0.0013916 ]) Estimated covariance function >>> rf = ts.tocovdata(lag=150) >>> rf.data[:10] array([ 0.22368637, 0.20838473, 0.17110733, 0.12237803, 0.07024054, 0.02064859, -0.02218831, -0.0555993 , -0.07859847, -0.09166187]) ''' def test_timeseries_trdata(): ''' >>> import wafo.spectrum.models as sm >>> import wafo.transform.models as tm >>> from wafo.objects import mat2timeseries >>> Hs = 7.0 >>> Sj = sm.Jonswap(Hm0=Hs) >>> S = Sj.tospecdata() #Make spectrum object from numerical values >>> S.tr = tm.TrOchi(mean=0, skew=0.16, kurt=0, sigma=Hs/4, ysigma=Hs/4) >>> xs = S.sim(ns=2**20, iseed=10) >>> ts = mat2timeseries(xs) >>> g0, gemp = ts.trdata(monitor=True) # Monitor the development # Equal weight on all points >>> g1, gemp = ts.trdata(method='mnonlinear', gvar=0.5 ) # Less weight on the ends >>> g2, gemp = ts.trdata(method='nonlinear', gvar=[3.5, 0.5, 3.5]) >>> 1.2 < S.tr.dist2gauss() < 1.6 True >>> 1.65 < g0.dist2gauss() < 2.05 True >>> 0.54 < g1.dist2gauss() < 0.95 True >>> 1.5 < g2.dist2gauss() < 1.9 True ''' if __name__ == '__main__': import doctest doctest.testmod()