''' Created on 17. juli 2010 @author: pab ''' import numpy as np # @UnusedImport from numpy import pi, inf # @UnusedImport # @UnusedImport from wafo.gaussian import (Rind, prbnormtndpc, prbnormndpc, prbnormnd, cdfnorm2d, prbnorm2d) def test_rind(): ''' >>> Et = 0.001946 # # exact prob. >>> n = 5 >>> Blo =-np.inf; Bup=-1.2; indI=[-1, n-1] # Barriers >>> m = np.zeros(n); rho = 0.3; >>> Sc =(np.ones((n,n))-np.eye(n))*rho+np.eye(n) >>> rind = Rind() >>> E0, err0, terr0 = rind(Sc,m,Blo,Bup,indI); >>> np.abs(E0-Et)< err0+terr0 array([ True], dtype=bool) >>> 'E0 = %2.6f' % E0 'E0 = 0.001946' >>> A = np.repeat(Blo,n); B = np.repeat(Bup,n) # Integration limits >>> E1, err1, terr1 = rind(np.triu(Sc),m,A,B); #same as E0 >>> np.abs(E1-Et)< err0+terr0 array([ True], dtype=bool) >>> 'E1 = %2.5f' % E1 'E1 = 0.00195' Compute expectation E( abs(X1*X2*...*X5) ) >>> xc = np.zeros((0,1)) >>> infinity = 37 >>> dev = np.sqrt(np.diag(Sc)) # std >>> ind = np.nonzero(indI[1:])[0] >>> Bup, Blo = np.atleast_2d(Bup,Blo) >>> Bup[0,ind] = np.minimum(Bup[0,ind] , infinity*dev[indI[ind+1]]) >>> Blo[0,ind] = np.maximum(Blo[0,ind] ,-infinity*dev[indI[ind+1]]) >>> rind(Sc,m,Blo,Bup,indI, xc, nt=0) (array([ 0.05494076]), array([ 0.00083066]), array([ 1.00000000e-10])) Compute expectation E( X1^{+}*X2^{+} ) with random correlation coefficient,Cov(X1,X2) = rho2. >>> m2 = [0, 0] >>> rho2 = 0.3 #np.random.rand(1) >>> Sc2 = [[1, rho2], [rho2 ,1]] >>> Blo2 = 0; Bup2 = np.inf; indI2 = [-1, 1] >>> rind2 = Rind(method=1) >>> g2 = lambda x : (x*(np.pi/2+np.arcsin(x))+np.sqrt(1-x**2))/(2*np.pi) >>> E2 = g2(rho2); E2 # exact value 0.24137214191774381 >>> E3, err3, terr3 = rind(Sc2,m2,Blo2,Bup2,indI2,nt=0); E3;err3;terr3 array([ 0.24127499]) array([ 0.00013838]) array([ 1.00000000e-10]) >>> E4, err4, terr4 = rind2(Sc2,m2,Blo2,Bup2,indI2,nt=0); E4;err4;terr4 array([ 0.24127499]) array([ 0.00013838]) array([ 1.00000000e-10]) >>> E5, err5, terr5 = rind2(Sc2,m2,Blo2,Bup2,indI2,nt=0,abseps=1e-4); E5;err5;terr5 array([ 0.24127499]) array([ 0.00013838]) array([ 1.00000000e-10]) ''' def test_prbnormtndpc(): ''' >>> rho2 = np.random.rand(2) >>> a2 = np.zeros(2) >>> b2 = np.repeat(np.inf,2) >>> [val2,err2, ift2] = prbnormtndpc(rho2,a2,b2) >>> g2 = lambda x : 0.25+np.arcsin(x[0]*x[1])/(2*pi) >>> E2 = g2(rho2) #% exact value >>> np.abs(E2-val2)>> rho3 = np.random.rand(3) >>> a3 = np.zeros(3) >>> b3 = np.repeat(inf,3) >>> [val3,err3, ift3] = prbnormtndpc(rho3,a3,b3) >>> g3 = lambda x : 0.5-sum(np.sort(np.arccos([x[0]*x[1],x[0]*x[2],x[1]*x[2]])))/(4*pi) >>> E3 = g3(rho3) # Exact value >>> np.abs(E3-val3)>> rho2 = np.random.rand(2) >>> a2 = np.zeros(2); >>> b2 = np.repeat(np.inf,2) >>> [val2,err2, ift2] = prbnormndpc(rho2,a2,b2) >>> g2 = lambda x : 0.25+np.arcsin(x[0]*x[1])/(2*pi) >>> E2 = g2(rho2) #% exact value >>> np.abs(E2-val2)>> rho3 = np.random.rand(3) >>> a3 = np.zeros(3) >>> b3 = np.repeat(inf,3) >>> [val3,err3, ift3] = prbnormndpc(rho3,a3,b3) >>> g3 = lambda x : 0.5-sum(np.sort(np.arccos([x[0]*x[1],x[0]*x[2],x[1]*x[2]])))/(4*pi) >>> E3 = g3(rho3) # Exact value >>> np.abs(E3-val3)>> import numpy as np >>> Et = 0.001946 # # exact prob. >>> n = 5 >>> Blo =-np.inf; Bup=-1.2 >>> m = np.zeros(n); rho = 0.3; >>> Sc =(np.ones((n,n))-np.eye(n))*rho+np.eye(n) >>> A = np.repeat(Blo,n) >>> B = np.repeat(Bup,n)-m >>> [val,err,inform] = prbnormnd(Sc,A,B) >>> np.abs(val-Et)< err True >>> 'val = %2.5f' % val 'val = 0.00195' ''' def test_cdfnorm2d(): ''' >>> x = np.linspace(-3,3,3) >>> [b1,b2] = np.meshgrid(x,x) >>> r = 0.3 >>> cdfnorm2d(b1,b2,r) array([[ 2.38515157e-05, 1.14504149e-03, 1.34987703e-03], [ 1.14504149e-03, 2.98493342e-01, 4.99795143e-01], [ 1.34987703e-03, 4.99795143e-01, 9.97324055e-01]]) ''' def test_prbnorm2d(): ''' >>> a = [-1, -2] >>> b = [1, 1] >>> r = 0.3 >>> prbnorm2d(a,b,r) array([ 0.56659121]) ''' if __name__ == '__main__': import doctest doctest.testmod()