import wafo.spectrum.models as sm import wafo.transform.models as wtm import wafo.objects as wo from wafo.spectrum import SpecData1D import numpy as np import unittest def slow(f): f.slow = True return f class TestSpectrum(unittest.TestCase): @slow def test_tocovmatrix(self): Sj = sm.Jonswap() S = Sj.tospecdata() acfmat = S.tocov_matrix(nr=3, nt=256, dt=0.1) vals = acfmat[:2, :] true_vals = np.array([[3.06073383, 0.0000000, -1.67748256, 0.], [3.05235423, -0.1674357, -1.66811444, 0.18693242]]) self.assertTrue((np.abs(vals - true_vals) < 1e-7).all()) def test_tocovdata(): Sj = sm.Jonswap() S = Sj.tospecdata() Nt = len(S.data) - 1 acf = S.tocovdata(nr=0, nt=Nt) vals = acf.data[:5] true_vals = np.array( [3.06090339, 2.22658399, 0.45307391, -1.17495501, -2.05649042]) assert((np.abs(vals - true_vals) < 1e-6).all()) def test_to_t_pdf(): Sj = sm.Jonswap() S = Sj.tospecdata() f = S.to_t_pdf(pdef='Tc', paramt=(0, 10, 51), speed=7, seed=100) vals = ['%2.3f' % val for val in f.data[:10]] truevals = ['0.000', '0.014', '0.027', '0.040', '0.050', '0.059', '0.067', '0.073', '0.077', '0.082'] for t, v in zip(truevals, vals): assert(t == v) # estimated error bounds vals = ['%2.4f' % val for val in f.err[:10]] truevals = ['0.0000', '0.0003', '0.0003', '0.0004', '0.0006', '0.0008', '0.0016', '0.0019', '0.0020', '0.0021'] for t, v in zip(truevals, vals): assert(t == v) @slow def test_sim(): Sj = sm.Jonswap() S = Sj.tospecdata() #ns = 100 #dt = .2 #x1 = S.sim(ns, dt=dt) import scipy.stats as st x2 = S.sim(20000, 20) truth1 = [0, np.sqrt(S.moment(1)[0]), 0., 0.] funs = [np.mean, np.std, st.skew, st.kurtosis] for fun, trueval in zip(funs, truth1): res = fun(x2[:, 1::], axis=0) m = res.mean() sa = res.std() #trueval, m, sa assert(np.abs(m - trueval) < sa) @slow def test_sim_nl(): Sj = sm.Jonswap() S = Sj.tospecdata() # ns = 100 # dt = .2 # x1 = S.sim_nl(ns, dt=dt) import scipy.stats as st x2, _x1 = S.sim_nl(ns=20000, cases=40) truth1 = [0, np.sqrt(S.moment(1)[0][0])] + S.stats_nl(moments='sk') truth1[-1] = truth1[-1] - 3 # truth1 #[0, 1.7495200310090633, 0.18673120577479801, 0.061988521262417606] funs = [np.mean, np.std, st.skew, st.kurtosis] for fun, trueval in zip(funs, truth1): res = fun(x2[:, 1::], axis=0) m = res.mean() sa = res.std() #trueval, m, sa assert(np.abs(m - trueval) < 2 * sa) def test_stats_nl(): Hs = 7. Sj = sm.Jonswap(Hm0=Hs, Tp=11) S = Sj.tospecdata() me, va, sk, ku = S.stats_nl(moments='mvsk') assert(me == 0.0) assert(va == 3.0608203389019537) assert(sk == 0.18673120577479801) assert(ku == 3.0619885212624176) def test_testgaussian(): Hs = 7 Sj = sm.Jonswap(Hm0=Hs) S0 = Sj.tospecdata() #ns =100; dt = .2 #x1 = S0.sim(ns, dt=dt) S = S0.copy() me, _va, sk, ku = S.stats_nl(moments='mvsk') S.tr = wtm.TrHermite( mean=me, sigma=Hs / 4, skew=sk, kurt=ku, ysigma=Hs / 4) ys = wo.mat2timeseries(S.sim(ns=2 ** 13)) g0, _gemp = ys.trdata() t0 = g0.dist2gauss() t1 = S0.testgaussian(ns=2 ** 13, t0=t0, cases=50) assert(sum(t1 > t0) < 5) def test_moment(): Sj = sm.Jonswap(Hm0=5) S = Sj.tospecdata() # Make spectrum ob vals, txt = S.moment() true_vals = [1.5614600345079888, 0.95567089481941048] true_txt = ['m0', 'm0tt'] for tv, v in zip(true_vals, vals): assert(tv == v) for tv, v in zip(true_txt, txt): assert(tv == v) def test_nyquist_freq(): Sj = sm.Jonswap(Hm0=5) S = Sj.tospecdata() # Make spectrum ob assert(S.nyquist_freq() == 3.0) def test_sampling_period(): Sj = sm.Jonswap(Hm0=5) S = Sj.tospecdata() # Make spectrum ob assert(S.sampling_period() == 1.0471975511965976) def test_normalize(): Sj = sm.Jonswap(Hm0=5) S = Sj.tospecdata() # Make spectrum ob S.moment(2) ([1.5614600345079888, 0.95567089481941048], ['m0', 'm0tt']) vals, _txt = S.moment(2) true_vals = [1.5614600345079888, 0.95567089481941048] for tv, v in zip(true_vals, vals): assert(tv == v) Sn = S.copy() Sn.normalize() # Now the moments should be one new_vals, _txt = Sn.moment(2) for v in new_vals: assert(np.abs(v - 1.0) < 1e-7) def test_characteristic(): ''' >>> import wafo.spectrum.models as sm >>> Sj = sm.Jonswap(Hm0=5) >>> S = Sj.tospecdata() #Make spectrum ob >>> S.characteristic(1) (array([ 8.59007646]), array([[ 0.03040216]]), ['Tm01']) >>> [ch, R, txt] = S.characteristic([1,2,3]) # fact a vector of integers >>> ch; R; txt array([ 8.59007646, 8.03139757, 5.62484314]) array([[ 0.03040216, 0.02834263, nan], [ 0.02834263, 0.0274645 , nan], [ nan, nan, 0.01500249]]) ['Tm01', 'Tm02', 'Tm24'] >>> S.characteristic('Ss') # fact a string (array([ 0.04963112]), array([[ 2.63624782e-06]]), ['Ss']) >>> S.characteristic(['Hm0','Tm02']) # fact a list of strings (array([ 4.99833578, 8.03139757]), array([[ 0.05292989, 0.02511371], [ 0.02511371, 0.0274645 ]]), ['Hm0', 'Tm02']) ''' def test_bandwidth(): Sj = sm.Jonswap(Hm0=3, Tp=7) w = np.linspace(0, 4, 256) S = SpecData1D(Sj(w), w) # Make spectrum object from numerical values vals = S.bandwidth([0, 1, 2, 3]) true_vals = np.array([0.73062845, 0.34476034, 0.68277527, 2.90817052]) assert((np.abs(vals - true_vals) < 1e-7).all()) def test_docstrings(): import doctest doctest.testmod() if __name__ == '__main__': import nose nose.run() # test_docstrings() # test_tocovdata() # test_tocovmatrix() # test_sim() # test_bandwidth()