''' Transform Gaussian models ------------------------- TrHermite TrOchi TrLinear ''' # !/usr/bin/env python from __future__ import division, absolute_import from scipy.optimize import brentq # @UnresolvedImport from numpy import (sqrt, atleast_1d, abs, imag, sign, where, cos, arccos, ceil, expm1, log1p, pi) import numpy as np import warnings from .core import TrCommon, TrData __all__ = ['TrHermite', 'TrLinear', 'TrOchi'] _EPS = np.finfo(float).eps _example = ''' >>> import numpy as np >>> import wafo.spectrum.models as sm >>> import wafo.transform.models as tm >>> std = 7./4 >>> g = tm.(sigma=std, ysigma=std) Simulate a Transformed Gaussian process: >>> Sj = sm.Jonswap(Hm0=4*std, Tp=11) >>> w = np.linspace(0,4,256) >>> S = Sj.tospecdata(w) # Make spectrum object from numerical values >>> ys = S.sim(ns=15000) # Simulated in the Gaussian world >>> me, va, sk, ku = S.stats_nl(moments='mvsk') >>> g2 = tm.(mean=me, var=va, skew=sk, kurt=ku, ysigma=std) >>> xs = g2.gauss2dat(ys[:,1:]) # Transformed to the real world ''' def _assert(cond, msg): if not cond: raise ValueError(msg) def _assert_warn(cond, msg): if not cond: warnings.warn(msg) class TrCommon2(TrCommon): __doc__ = TrCommon.__doc__ # @ReservedAssignment def trdata(self, x=None, xnmin=-5, xnmax=5, n=513): """ Return a discretized transformation model. Parameters ---------- x : vector (default sigma*linspace(xnmin,xnmax,n)+mean) xnmin : real, scalar minimum on normalized scale xnmax : real, scalar maximum on normalized scale n : integer, scalar number of evaluation points Returns ------- t0 : real, scalar a measure of departure from the Gaussian model calculated as trapz((xn-g(x))**2., xn) where int. limits is given by X. """ if x is None: xn = np.linspace(xnmin, xnmax, n) x = self.sigma * xn + self.mean else: xn = (x - self.mean) / self.sigma yn = (self._dat2gauss(x) - self.ymean) / self.ysigma return TrData(yn, x, mean=self.mean, sigma=self.sigma) class TrHermite(TrCommon2): __doc__ = TrCommon2.__doc__.replace('', 'Hermite' ) + """ pardef : scalar, integer 1 Winterstein et. al. (1994) parametrization [1]_ (default) 2 Winterstein (1988) parametrization [2]_ Description ----------- The hermite transformation model is monotonic cubic polynomial, calibrated such that the first 4 moments of the transformed model G(y)=g^-1(y) match the moments of the true process. The model is given as: g(x) = xn - c3(xn**2-1) - c4*(xn**3-3*xn) for kurt<3 (hardening model) where xn = (x-mean)/sigma c3 = skew/6 c4 = (kurt-3)/24. or G(y) = mean + K*sigma*[ y + c3(y**2-1) + c4*(y**3-3*y) ] for kurt>=3 (softening model) where y = g(x) = G**-1(x) K = 1/sqrt(1+2*c3^2+6*c4^2) If pardef = 1 : c3 = skew/6*(1-0.015*abs(skew)+0.3*skew^2)/(1+0.2*(kurt-3)) c4 = 0.1*((1+1.25*(kurt-3))^(1/3)-1)*c41 c41 = (1-1.43*skew^2/(kurt-3))^(1-0.1*(kurt)^0.8) If pardef = 2 : c3 = skew/(6*(1+6*c4)) c4 = [sqrt(1+1.5*(kurt-3))-1]/18 Example: -------- """ + _example.replace('', 'TrHermite') + """ >>> np.allclose(g.dist2gauss(), 0.88230868748851499) True >>> np.allclose(g2.dist2gauss(), 1.1411663205144991) True See also -------- SpecData1d.stats_nl wafo.transform.TrOchi wafo.objects.LevelCrossings.trdata wafo.objects.TimeSeries.trdata References ---------- .. [1] Winterstein, S.R, Ude, T.C. and Kleiven, G. (1994) "Springing and slow drift responses: predicted extremes and fatigue vs. simulation" In Proc. 7th International behaviour of Offshore structures, (BOSS) Vol. 3, pp.1-15 .. [2] Winterstein, S.R. (1988) 'Nonlinear vibration models for extremes and fatigue.' J. Engng. Mech., ASCE, Vol 114, No 10, pp 1772-1790 """ def __init__(self, *args, **kwds): super(TrHermite, self).__init__(*args, **kwds) self._c3 = None self._c4 = None self._forward = None self._backward = None self._x_limit = None self.pardef = kwds.get('pardef', 1) self.set_poly() @property def pardef(self): return self._pardef @pardef.setter def pardef(self, pardef): self._pardef = pardef if pardef == 2: self._softening_parameters = self._winterstein1988 else: self._softening_parameters = self._winterstein1994 def _check_c3_c4(self, c3, c4): _assert(np.isfinite(c3) and np.isfinite(c4), 'Unable to calculate the polynomial') if abs(c4) < sqrt(_EPS): c4 = 0.0 return c4 def _winterstein1988(self, skew, excess_kurtosis): """Winterstein 1988 parametrization""" _assert_warn(skew ** 2 <= 8 * (excess_kurtosis + 3.) / 9, 'Kurtosis too low compared to the skewness') c4 = (sqrt(1. + 1.5 * excess_kurtosis) - 1.) / 18. c3 = skew / (6. * (1 + 6. * c4)) c4 = self._check_c3_c4(c3, c4) return c3, c4 def _winterstein1994(self, skew, excess_kurtosis): """Winterstein et. al. 1994 parametrization intended to apply for the range: 0 <= excess_kurtosis < 12 and 0<= skew^2 < 2*excess_kurtosis/3 """ _assert_warn(skew ** 2 <= 2 * (excess_kurtosis) / 3, 'Kurtosis too low compared to the skewness') _assert_warn(0 <= excess_kurtosis < 12, 'Kurtosis must be between 0 and 12') c3 = (skew / 6 * (1 - 0.015 * abs(skew) + 0.3 * skew ** 2) / (1 + 0.2 * excess_kurtosis)) if excess_kurtosis == 0.: c4 = 0.0 else: expon = 1. - 0.1 * (excess_kurtosis + 3.) ** 0.8 c41 = (1. - 1.43 * skew ** 2. / excess_kurtosis) ** (expon) c4 = 0.1 * ((1. + 1.25 * excess_kurtosis) ** (1. / 3.) - 1.) * c41 c4 = self._check_c3_c4(c3, c4) return c3, c4 def _hardening_parameters(self, skew, excess_kurtosis): c4 = excess_kurtosis / 24. c3 = skew / 6. c4 = self._check_c3_c4(c3, c4) return c3, c4 def _set_x_limit(self, root, polynom): """Compute where it is possible to invert the polynomial""" if self.kurt <= 3.: self._x_limit = root else: self._x_limit = self.sigma * polynom(root) + self.mean txt1 = ''' The polynomial is not a strictly increasing function. The derivative of g(x) is infinite at x = %g''' % self._x_limit warnings.warn(txt1) def _check_monotonicity(self, p): dp = p.deriv(m=1) # derivative roots = dp.r # roots of the derivative roots = roots[where(abs(imag(roots)) < _EPS)] # Keep only real roots if roots.size > 0: self._set_x_limit(roots, p) def _set_hardening_model(self): skew, excess_kurtosis = self.skew, self.kurt - 3.0 c3, c4 = self._hardening_parameters(skew, excess_kurtosis) p = np.poly1d([-c4, -c3, 1. + 3. * c4, c3]) self._forward = p self._backward = lambda yn: self._poly_inv(self._forward, yn) # Check if it is a strictly increasing function. self._check_monotonicity(p) def _set_softening_model(self): skew, excess_kurtosis = self.skew, self.kurt - 3.0 c3, c4 = self._softening_parameters(skew, excess_kurtosis) Km1 = np.sqrt(1. + 2. * c3 ** 2 + 6 * c4 ** 2) # backward G p = np.poly1d(np.r_[c4, c3, 1. - 3. * c4, -c3] / Km1) self._backward = p self._forward = lambda yn: self._poly_inv(self._backward, yn) # Check if it is a strictly increasing function. self._check_monotonicity(p) def set_poly(self): ''' Set poly function from stats (i.e., mean, sigma, skew and kurt) ''' if self.kurt <= 3.0: self._set_hardening_model() else: self._set_softening_model() def check_forward(self, x): if self._x_limit is not None: x00 = self._x_limit txt2 = 'for the given interval x = [%g, %g]' % (x[0], x[-1]) if any(np.logical_and(x[0] <= x00, x00 <= x[-1])): cdef = 1 else: cdef = sum(np.logical_xor(x00 <= x[0], x00 <= x[-1])) if np.mod(cdef, 2): errtxt = 'Unable to invert the polynomial \n %s' % txt2 raise ValueError(errtxt) np.disp( 'However, successfully inverted the polynomial\n %s' % txt2) def _dat2gauss(self, x, *xi): if len(xi) > 0: raise ValueError('Transforming derivatives is not implemented!') xn = atleast_1d(x) self.check_forward(xn) xn = (xn - self.mean) / self.sigma if self._forward is None: # Inverting the polynomial yn = self._poly_inv(self._backward, xn) else: yn = self._forward(xn) return yn * self.ysigma + self.ymean def _gauss2dat(self, y, *yi): if len(yi) > 0: raise ValueError('Transforming derivatives is not implemented!') yn = (atleast_1d(y) - self.ymean) / self.ysigma # self.check_forward(y) if self._backward is None: # Inverting the polynomial xn = self._poly_inv(self._forward, yn) else: xn = self._backward(yn) return self.sigma * xn + self.mean def _solve_quadratic(self, p, xn): # Quadratic: Solve a*u**2+b*u+c = xn coefs = p.coeffs a = coefs[0] b = coefs[1] c = coefs[2] - xn t = 0.5 * (b + sign(b) * sqrt(b ** 2 - 4 * a * c)) # so1 = t/a # largest solution so2 = -c / t # smallest solution return so2 def _poly_inv(self, p, xn): ''' Invert polynomial ''' if p.order < 2: return xn elif p.order == 2: return self._solve_quadratic(p, xn) elif p.order == 3: return self._solve_third_order(p, xn) def _solve_third_order(self, p, xn): # Solve # K*(c4*u^3+c3*u^2+(1-3*c4)*u-c3) = xn = (x-ma)/sa # -c4*xn^3-c3*xn^2+(1+3*c4)*xn+c3 = u coefs = p.coeffs[1::] / p.coeffs[0] a = coefs[0] b = coefs[1] c = coefs[2] - xn / p.coeffs[0] x0 = a / 3. # substitue xn = z-x0 and divide by c4 => z^3 + 3*p1*z+2*q0 = 0 p1 = b / 3 - x0 ** 2 # p1 = (b-a**2/3)/3 # q0 = (c + x0*(2.*x0/3.-b))/2. # q0 = x0**3 -a*b/6 +c/2 q0 = x0 * (x0 ** 2 - b / 2) + c / 2 # z^3+3*p1*z+2*q0=0 # c3 = self._c3 # c4 = self._c4 # b1 = 1./(3.*c4) # x0 = c3*b1 # % substitue u = z-x0 and divide by c4 => z^3 + 3*c*z+2*q0 = 0 # p1 = b1-1.-x0**2. # Km1 = np.sqrt(1.+2.*c3**2+6*c4**2) # q0 = x0**3-1.5*b1*(x0+xn*Km1) # q0 = x0**3-1.5*b1*(x0+xn) if self._x_limit is not None: # % Three real roots d = sqrt(-p1) theta1 = arccos(-q0 / d ** 3) / 3 th2 = np.r_[0, -2 * pi / 3, 2 * pi / 3] x1 = abs(2 * d * cos(theta1[ceil(len(xn) / 2)] + th2) - x0) ix = x1.argmin() # choose the smallest solution return 2. * d * cos(theta1 + th2[ix]) - x0 else: # Only one real root exist q1 = sqrt((q0) ** 2 + p1 ** 3) # Find the real root of the monic polynomial A0 = (q1 - q0) ** (1. / 3.) B0 = -(q1 + q0) ** (1. / 3.) return A0 + B0 - x0 # real root # The other complex roots are given by # x= -(A0+B0)/2+(A0-B0)*sqrt(3)/2-x0 # x=-(A0+B0)/2+(A0-B0)*sqrt(-3)/2-x0 class TrLinear(TrCommon2): __doc__ = TrCommon2.__doc__.replace('', 'Linear' ) + """ Description ----------- The linear transformation model is monotonic linear polynomial, calibrated such that the first 2 moments of the transformed model G(y)=g^-1(y) match the moments of the true process. Example: -------- """ + _example.replace('', 'TrLinear') + """ >>> np.allclose(g.dist2gauss(), 0) True >>> np.allclose(g2.dist2gauss(), 0) True See also -------- TrOchi TrHermite SpecData1D.stats_nl LevelCrossings.trdata TimeSeries.trdata spec2skew, ochitr, lc2tr, dat2tr """ def _dat2gauss(self, x, *xi): sratio = atleast_1d(self.ysigma / self.sigma) y = (atleast_1d(x) - self.mean) * sratio + self.ymean if len(xi) > 0: y = [y, ] + [ix * sratio for ix in xi] return y def _gauss2dat(self, y, *yi): sratio = atleast_1d(self.sigma / self.ysigma) x = (atleast_1d(y) - self.ymean) * sratio + self.mean if len(yi) > 0: x = [x, ] + [iy * sratio for iy in yi] return x class TrOchi(TrCommon2): __doc__ = TrCommon2.__doc__.replace('', 'Ochi' ) + """ Description ----------- The Ochi transformation model is a monotonic exponential function, calibrated such that the first 3 moments of the transformed model G(y)=g^-1(y) match the moments of the true process. However, the skewness is limited by ABS(SKEW)<2.82. According to Ochi it is appropriate for a process with very strong non-linear characteristics. The model is given as: g(x) = ((1-exp(-gamma*(x-mean)/sigma))/gamma-mean2)/sigma2 where gamma = 1.28*a for x>=mean 3*a otherwise mean, sigma = standard deviation and mean, respectively, of the process. mean2, sigma2 = normalizing parameters in the transformed world, i.e., to make the gaussian process in the transformed world is N(0,1). The unknown parameters a, mean2 and sigma2 are found by solving the following non-linear equations: a*(sigma2^2+mean2^2)+mean2 = 0 sigma2^2-2*a^2*sigma2^4 = 1 2*a*sigma2^4*(3-8*a^2*sigma2^2) = skew Note ---- Transformation, g, does not have continous derivatives of 2'nd order or higher. Example ------- """ + _example.replace('', 'TrOchi') + """ >>> np.allclose(g.dist2gauss(), 1.410698801056657) True >>> np.allclose(g2.dist2gauss(), 1.988807188766706) True See also -------- spec2skew, hermitetr, lc2tr, dat2tr References ---------- Ochi, M.K. and Ahn, K. (1994) 'Non-Gaussian probability distribution of coastal waves.' In Proc. 24th Conf. Coastal Engng, Vol. 1, pp 482-496 Michel K. Ochi (1998), "OCEAN WAVES, The stochastic approach", OCEAN TECHNOLOGY series 6, Cambridge, pp 255-275. """ def __init__(self, *args, **kwds): super(TrOchi, self).__init__(*args, **kwds) self.kurt = None self._phat = None self._par_from_stats() def _par_from_stats(self): skew = self.skew if abs(skew) > 2.82842712474619: raise ValueError('Skewness must be less than 2.82842') mean1 = self.mean sigma1 = self.sigma if skew == 0: self._phat = [sigma1, mean1, 0, 0, 1, 0] return # Solve the equations to obtain the gamma parameters: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # a*(sig2^2+ma2^2)+ma2 = 0 # sig2^2-2*a^2*sig2^4 = E(y^2) % =1 # 2*a*sig2^4*(3-8*a^2*sig2^2) = E(y^3) % = skew # Let x = [a sig2^2 ] # Set up the 2D non-linear equations for a and sig2^2: # g1='[x(2)-2.*x(1).^2.*x(2).^2-P1, # 2.*x(1).*x(2).^2.*(3-8.*x(1).^2.*x(2))-P2 ]' # Or solve the following 1D non-linear equation for sig2^2: def g2(x): return (-sqrt(abs(x - 1) * 2) * (3. * x - 4 * abs(x - 1)) + abs(skew)) a1 = 1. # Start interval where sig2^2 is located. a2 = 2. sig22 = brentq(g2, a1, a2) # % smallest solution for sig22 a = sign(skew) * sqrt(abs(sig22 - 1) / 2) / sig22 gam_a = 1.28 * a gam_b = 3 * a sigma2 = sqrt(sig22) # Solve the following 2nd order equation to obtain ma2 # a*(sig2^2+ma2^2)+ma2 = 0 my2 = (-1. - sqrt(1. - 4. * a ** 2 * sig22)) / a # % Largest mean mean2 = a * sig22 / my2 # % choose the smallest mean self._phat = [sigma1, mean1, gam_a, gam_b, sigma2, mean2] return def _get_par(self): ''' Returns ga, gb, sigma2, mean2 ''' if (self._phat is None or self.sigma != self._phat[0] or self.mean != self._phat[1]): self._par_from_stats() # sigma1 = self._phat[0] # mean1 = self._phat[1] ga = self._phat[2] gb = self._phat[3] sigma2 = self._phat[4] mean2 = self._phat[5] return ga, gb, sigma2, mean2 def _dat2gauss(self, x, *xi): if len(xi) > 0: raise ValueError('Transforming derivatives is not implemented!') ga, gb, sigma2, mean2 = self._get_par() mean = self.mean sigma = self.sigma xn = atleast_1d(x) shape0 = xn.shape xn = (xn.ravel() - mean) / sigma igp, = where(0 <= xn) igm, = where(xn < 0) g = xn.copy() if ga != 0: np.put(g, igp, (-expm1(-ga * xn[igp])) / ga) if gb != 0: np.put(g, igm, (-expm1(-gb * xn[igm])) / gb) g.shape = shape0 return (g - mean2) * self.ysigma / sigma2 + self.ymean def _gauss2dat(self, y, *yi): if len(yi) > 0: raise ValueError('Transforming derivatives is not implemented!') ga, gb, sigma2, mean2 = self._get_par() mean = self.mean sigma = self.sigma yn = (atleast_1d(y) - self.ymean) / self.ysigma xn = sigma2 * yn.ravel() + mean2 igp, = where(0 <= xn) igm, = where(xn < 0) if ga != 0: np.put(xn, igp, -log1p(-ga * xn[igp]) / ga) if gb != 0: np.put(xn, igm, -log1p(-gb * xn[igm]) / gb) xn.shape = yn.shape return sigma * xn + mean def main(): import pylab g = TrHermite(skew=0.1, kurt=3.01) g.dist2gauss() # g = TrOchi(skew=0.56) x = np.linspace(-5, 5) y = g(x) pylab.plot(np.abs(x - g.gauss2dat(y))) # pylab.plot(x,y,x,x,':',g.gauss2dat(y),y,'r') pylab.show() np.disp('finito') if __name__ == '__main__': if True: # False: # import doctest doctest.testmod() else: main()