## CHAPTER5 contains the commands used in Chapter 5 of the tutorial # # CALL: Chapter5 # # Some of the commands are edited for fast computation. # Each set of commands is followed by a 'pause' command. # # Tested on Matlab 5.3 # History # Added Return values by GL August 2008 # Revised pab sept2005 # Added sections -> easier to evaluate using cellmode evaluation. # Created by GL July 13, 2000 # from commands used in Chapter 5 # ## Chapter 5 Extreme value analysis ## Section 5.1 Weibull and Gumbel papers from __future__ import division import numpy as np import scipy.interpolate as si from wafo.plotbackend import plotbackend as plt import wafo.data as wd import wafo.objects as wo import wafo.stats as ws import wafo.kdetools as wk pstate = 'off' # Significant wave-height data on Weibull paper, fig = plt.figure() ax = fig.add_subplot(111) Hs = wd.atlantic() wei = ws.weibull_min.fit(Hs) tmp = ws.probplot(Hs, wei, ws.weibull_min, plot=ax) plt.show() #wafostamp([],'(ER)') #disp('Block = 1'),pause(pstate) ## # Significant wave-height data on Gumbel paper, plt.clf() ax = fig.add_subplot(111) gum = ws.gumbel_r.fit(Hs) tmp1 = ws.probplot(Hs, gum, ws.gumbel_r, plot=ax) #wafostamp([],'(ER)') plt.show() #disp('Block = 2'),pause(pstate) ## # Significant wave-height data on Normal probability paper, plt.clf() ax = fig.add_subplot(111) phat = ws.norm.fit2(np.log(Hs)) phat.plotresq() #tmp2 = ws.probplot(np.log(Hs), phat, ws.norm, plot=ax) #wafostamp([],'(ER)') plt.show() #disp('Block = 3'),pause(pstate) ## # Return values in the Gumbel distribution plt.clf() T = np.r_[1:100000] sT = gum[0] - gum[1] * np.log(-np.log1p(-1./T)) plt.semilogx(T, sT) plt.hold(True) # ws.edf(Hs).plot() Nmax = len(Hs) N = np.r_[1:Nmax+1] plt.plot(Nmax/N, sorted(Hs, reverse=True), '.') plt.title('Return values in the Gumbel model') plt.xlabel('Return period') plt.ylabel('Return value') #wafostamp([],'(ER)') plt.show() #disp('Block = 4'),pause(pstate) ## Section 5.2 Generalized Pareto and Extreme Value distributions ## Section 5.2.1 Generalized Extreme Value distribution # Empirical distribution of significant wave-height with estimated # Generalized Extreme Value distribution, gev = ws.genextreme.fit2(Hs) gev.plotfitsummary() # wafostamp([],'(ER)') # disp('Block = 5a'),pause(pstate) plt.clf() x = np.linspace(0,14,200) kde = wk.TKDE(Hs, L2=0.5)(x, output='plot') kde.plot() plt.hold(True) plt.plot(x, gev.pdf(x),'--') # disp('Block = 5b'),pause(pstate) # Analysis of yura87 wave data. # Wave data interpolated (spline) and organized in 5-minute intervals # Normalized to mean 0 and std = 1 to get stationary conditions. # maximum level over each 5-minute interval analysed by GEV xn = wd.yura87() XI = np.r_[1:len(xn):0.25] - .99 N = len(XI) N = N - np.mod(N, 4*60*5) YI = si.interp1d(xn[:, 0],xn[:, 1], kind='linear')(XI) YI = YI.reshape(4*60*5, N/(4*60*5)) # Each column holds 5 minutes of # interpolated data. Y5 = (YI - YI.mean(axis=0)) / YI.std(axis=0) Y5M = Y5.maximum(axis=0) Y5gev = ws.genextreme.fit2(Y5M,method='mps') Y5gev.plotfitsummary() #wafostamp([],'(ER)') #disp('Block = 6'),pause(pstate) ## Section 5.2.2 Generalized Pareto distribution # Exceedances of significant wave-height data over level 3, gpd3 = ws.genpareto.fit2(Hs[Hs>3]-3, floc=0) gpd3.plotfitsummary() #wafostamp([],'(ER)') ## plt.figure() # Exceedances of significant wave-height data over level 7, gpd7 = ws.genpareto.fit2(Hs(Hs>7), floc=7) gpd7.plotfitsummary() # wafostamp([],'(ER)') # disp('Block = 6'),pause(pstate) ## #Simulates 100 values from the GEV distribution with parameters (0.3, 1, 2), # then estimates the parameters using two different methods and plots the # estimated distribution functions together with the empirical distribution. Rgev = ws.genextreme.rvs(0.3,1,2,size=100) gp = ws.genextreme.fit2(Rgev, method='mps'); gm = ws.genextreme.fit2(Rgev, *gp.par.tolist(), method='ml') gm.plotfitsummary() gp.plotecdf() plt.hold(True) plt.plot(x, gm.cdf(x), '--') plt.hold(False) #wafostamp([],'(ER)') #disp('Block =7'),pause(pstate) ## # ; Rgpd = ws.genpareto.rvs(0.4,0, 1,size=100) gp = ws.genpareto.fit2(Rgpd, method='mps') gml = ws.genpareto.fit2(Rgpd, method='ml') gp.plotecdf() x = sorted(Rgpd) plt.hold(True) plt.plot(x, gml.cdf(x)) # gm = fitgenpar(Rgpd,'method','mom','plotflag',0); # plot(x,cdfgenpar(x,gm),'g--') #gw = fitgenpar(Rgpd,'method','pwm','plotflag',0); #plot(x,cdfgenpar(x,gw),'g:') #gml = fitgenpar(Rgpd,'method','ml','plotflag',0); #plot(x,cdfgenpar(x,gml),'--') #gmps = fitgenpar(Rgpd,'method','mps','plotflag',0); #plot(x,cdfgenpar(x,gmps),'r-.') plt.hold(False) #wafostamp([],'(ER)') #disp('Block = 8'),pause(pstate) ## # Return values for the GEV distribution T = np.logspace(1, 5, 10); #[sT, sTlo, sTup] = invgev(1./T,Y5gev,'lowertail',false,'proflog',true); #T = 2:100000; #k=Y5gev.params(1); mu=Y5gev.params(3); sigma=Y5gev.params(2); #sT1 = invgev(1./T,Y5gev,'lowertail',false); #sT=mu + sigma/k*(1-(-log(1-1./T)).^k); plt.clf() #plt.semilogx(T,sT,T,sTlo,'r',T,sTup,'r') #plt.hold(True) #N = np.r_[1:len(Y5M)] #Nmax = max(N); #plot(Nmax./N, sorted(Y5M,reverse=True), '.') #plt.title('Return values in the GEV model') #plt.xlabel('Return priod') #plt.ylabel('Return value') #plt.grid(True) #disp('Block = 9'),pause(pstate) ## Section 5.3 POT-analysis # Estimated expected exceedance over level u as function of u. plt.clf() mrl = ws.reslife(Hs,'umin',2,'umax',10,'Nu',200); mrl.plot() #wafostamp([],'(ER)') #disp('Block = 10'),pause(pstate) ## # Estimated distribution functions of monthly maxima #with the POT method (solid), # fitting a GEV (dashed) and the empirical distribution. # POT- method gpd7 = ws.genpareto.fit2(Hs(Hs>7)-7, method='mps', floc=0) khat, loc, sigmahat = gpd7.par muhat = len(Hs[Hs>7])/(7*3*2) bhat = sigmahat/muhat**khat ahat = 7-(bhat-sigmahat)/khat x = np.linspace(5,15,200); plt.plot(x,ws.genextreme.cdf(x, khat,bhat,ahat)) # disp('Block = 11'),pause(pstate) ## # Since we have data to compute the monthly maxima mm over #42 months we can also try to fit a # GEV distribution directly: mm = np.zeros((1,41)) for i in range(41): mm[i] = max(Hs[((i-1)*14+1):i*14]) gev = ws.genextreme.fit2(mm) plt.hold(True) gev.plotecdf() plt.hold(False) #wafostamp([],'(ER)') #disp('Block = 12, Last block'),pause(pstate)