''' Created on 3. juni 2011 @author: pab ''' from __future__ import absolute_import import numpy as np from numpy import exp, expm1, inf, nan, pi, hstack, where, atleast_1d, cos, sin from .dispersion_relation import w2k, k2w # @UnusedImport __all__ = ['w2k', 'k2w', 'sensor_typeid', 'sensor_type', 'TransferFunction'] def hyperbolic_ratio(a, b, sa, sb): ''' Return ratio of hyperbolic functions to allow extreme variations of arguments. Parameters ---------- a, b : array-like arguments vectors of the same size sa, sb : scalar integers defining the hyperbolic function used, i.e., f(x,1)=cosh(x), f(x,-1)=sinh(x) Returns ------- r : ndarray f(a,sa)/f(b,sb), ratio of hyperbolic functions of same size as a and b Examples -------- >>> x = [-2,0,2] >>> hyperbolic_ratio(x,1,1,1) # gives r=cosh(x)/cosh(1) array([ 2.438107 , 0.64805427, 2.438107 ]) >>> hyperbolic_ratio(x,1,1,-1) # gives r=cosh(x)/sinh(1) array([ 3.20132052, 0.85091813, 3.20132052]) >>> hyperbolic_ratio(x,1,-1,1) # gives r=sinh(x)/cosh(1) array([-2.35040239, 0. , 2.35040239]) >>> hyperbolic_ratio(x,1,-1,-1) # gives r=sinh(x)/sinh(1) array([-3.08616127, 0. , 3.08616127]) >>> hyperbolic_ratio(1,x,1,1) # gives r=cosh(1)/cosh(x) array([ 0.41015427, 1.54308063, 0.41015427]) >>> hyperbolic_ratio(1,x,1,-1) # gives r=cosh(1)/sinh(x) array([-0.42545906, inf, 0.42545906]) >>> hyperbolic_ratio(1,x,-1,1) # gives r=sinh(1)/cosh(x) array([ 0.3123711 , 1.17520119, 0.3123711 ]) >>> hyperbolic_ratio(1,x,-1,-1) # gives r=sinh(1)/sinh(x) array([-0.32402714, inf, 0.32402714]) See also -------- tran ''' ak, bk, sak, sbk = np.atleast_1d(a, b, np.sign(sa), np.sign(sb)) # old call # return exp(ak-bk)*(1+sak*exp(-2*ak))/(1+sbk*exp(-2*bk)) # TODO: Does not always handle division by zero correctly signRatio = np.where(sak * ak < 0, sak, 1) signRatio = np.where(sbk * bk < 0, sbk * signRatio, signRatio) bk = np.abs(bk) ak = np.abs(ak) num = np.where(sak < 0, expm1(-2 * ak), 1 + exp(-2 * ak)) den = np.where(sbk < 0, expm1(-2 * bk), 1 + exp(-2 * bk)) iden = np.ones(den.shape) * inf ind = np.flatnonzero(den != 0) iden.flat[ind] = 1.0 / den[ind] val = np.where(num == den, 1, num * iden) # ((sak+exp(-2*ak))/(sbk+exp(-2*bk))) return signRatio * exp(ak - bk) * val def sensor_typeid(*sensortypes): ''' Return ID for sensortype name Parameter --------- sensortypes : list of strings defining the sensortype Returns ------- sensorids : list of integers defining the sensortype Valid senor-ids and -types for time series are as follows: 0, 'n' : Surface elevation (n=Eta) 1, 'n_t' : Vertical surface velocity 2, 'n_tt' : Vertical surface acceleration 3, 'n_x' : Surface slope in x-direction 4, 'n_y' : Surface slope in y-direction 5, 'n_xx' : Surface curvature in x-direction 6, 'n_yy' : Surface curvature in y-direction 7, 'n_xy' : Surface curvature in xy-direction 8, 'P' : Pressure fluctuation about static MWL pressure 9, 'U' : Water particle velocity in x-direction 10, 'V' : Water particle velocity in y-direction 11, 'W' : Water particle velocity in z-direction 12, 'U_t' : Water particle acceleration in x-direction 13, 'V_t' : Water particle acceleration in y-direction 14, 'W_t' : Water particle acceleration in z-direction 15, 'X_p' : Water particle displacement in x-direction from mean pos. 16, 'Y_p' : Water particle displacement in y-direction from mean pos. 17, 'Z_p' : Water particle displacement in z-direction from mean pos. Example: >>> sensor_typeid('W','v') [11, 10] >>> sensor_typeid('rubbish') [nan] See also -------- sensor_type ''' sensorid_table = dict(n=0, n_t=1, n_tt=2, n_x=3, n_y=4, n_xx=5, n_yy=6, n_xy=7, p=8, u=9, v=10, w=11, u_t=12, v_t=13, w_t=14, x_p=15, y_p=16, z_p=17) try: return [sensorid_table.get(name.lower(), nan) for name in sensortypes] except: raise ValueError('Input must be a string!') def sensor_type(*sensorids): ''' Return sensortype name Parameter --------- sensorids : vector or list of integers defining the sensortype Returns ------- sensornames : tuple of strings defining the sensortype Valid senor-ids and -types for time series are as follows: 0, 'n' : Surface elevation (n=Eta) 1, 'n_t' : Vertical surface velocity 2, 'n_tt' : Vertical surface acceleration 3, 'n_x' : Surface slope in x-direction 4, 'n_y' : Surface slope in y-direction 5, 'n_xx' : Surface curvature in x-direction 6, 'n_yy' : Surface curvature in y-direction 7, 'n_xy' : Surface curvature in xy-direction 8, 'P' : Pressure fluctuation about static MWL pressure 9, 'U' : Water particle velocity in x-direction 10, 'V' : Water particle velocity in y-direction 11, 'W' : Water particle velocity in z-direction 12, 'U_t' : Water particle acceleration in x-direction 13, 'V_t' : Water particle acceleration in y-direction 14, 'W_t' : Water particle acceleration in z-direction 15, 'X_p' : Water particle displacement in x-direction from mean pos. 16, 'Y_p' : Water particle displacement in y-direction from mean pos. 17, 'Z_p' : Water particle displacement in z-direction from mean pos. Example: >>> sensor_type(range(3)) ('n', 'n_t', 'n_tt') See also -------- sensor_typeid, tran ''' valid_names = ('n', 'n_t', 'n_tt', 'n_x', 'n_y', 'n_xx', 'n_yy', 'n_xy', 'p', 'u', 'v', 'w', 'u_t', 'v_t', 'w_t', 'x_p', 'y_p', 'z_p', nan) ids = atleast_1d(*sensorids) if isinstance(ids, list): ids = hstack(ids) n = len(valid_names) - 1 ids = where(((ids < 0) | (n < ids)), n, ids) return tuple(valid_names[i] for i in ids) class TransferFunction(object): ''' Class for computing transfer functions based on linear wave theory of the system with input surface elevation, eta(x0,y0,t) = exp(i*(kx*x0+ky*y0-w*t)), and output Y determined by sensortype and position of sensor. Member methods -------------- tran(w, theta, kw) Hw = a function of frequency only (not direction) size 1 x Nf Gwt = a function of frequency and direction size Nt x Nf w = vector of angular frequencies in Rad/sec. Length Nf theta = vector of directions in radians Length Nt (default 0) ( theta = 0 -> positive x axis theta = pi/2 -> positive y axis) Member variables ---------------- pos : [x,y,z], (default [0,0,0]) vector giving coordinate position relative to [x0 y0 z0] sensortype = string defining the sensortype or transfer function in output. 0, 'n' : Surface elevation (n=Eta) (default) 1, 'n_t' : Vertical surface velocity 2, 'n_tt' : Vertical surface acceleration 3, 'n_x' : Surface slope in x-direction 4, 'n_y' : Surface slope in y-direction 5, 'n_xx' : Surface curvature in x-direction 6, 'n_yy' : Surface curvature in y-direction 7, 'n_xy' : Surface curvature in xy-direction 8, 'P' : Pressure fluctuation about static MWL pressure 9, 'U' : Water particle velocity in x-direction 10, 'V' : Water particle velocity in y-direction 11, 'W' : Water particle velocity in z-direction 12, 'U_t' : Water particle acceleration in x-direction 13, 'V_t' : Water particle acceleration in y-direction 14, 'W_t' : Water particle acceleration in z-direction 15, 'X_p' : Water particle displacement in x-direction from mean pos. 16, 'Y_p' : Water particle displacement in y-direction from mean pos. 17, 'Z_p' : Water particle displacement in z-direction from mean pos. h : real scalar water depth (default inf) g : real scalar acceleration of gravity (default 9.81 m/s**2) rho : real scalar water density (default 1028 kg/m**3) bet : 1 or -1 (default 1) 1, theta given in terms of directions toward which waves travel -1, theta given in terms of directions from which waves come igam : 1,2 or 3 1, if z is measured positive upward from mean water level (default) 2, if z is measured positive downward from mean water level 3, if z is measured positive upward from sea floor thetax, thetay : real scalars angle in degrees clockwise from true north to positive x-axis and positive y-axis, respectively. (default theatx=90, thetay=0) Example ------- >>> import pylab as plt >>> N=50; f0=0.1; th0=0; h=50; w0 = 2*pi*f0 >>> t = np.linspace(0,15,N) >>> eta0 = np.exp(-1j*w0*t) >>> stypes = ['n', 'n_x', 'n_y']; >>> tf = TransferFunction(pos=(0, 0, 0), h=50) >>> vals = [] >>> fh = plt.plot(t, eta0.real, 'r.') >>> plt.hold(True) >>> for i,stype in enumerate(stypes): ... tf.sensortype = stype ... Hw, Gwt = tf.tran(w0,th0) ... vals.append((Hw*Gwt*eta0).real.ravel()) fh = plt.plot(t, vals[i]) plt.show() See also -------- dat2dspec, sensor_type, sensor_typeid Reference --------- Young I.R. (1994) "On the measurement of directional spectra", Applied Ocean Research, Vol 16, pp 283-294 ''' def __init__(self, pos=(0, 0, 0), sensortype='n', h=inf, g=9.81, rho=1028, bet=1, igam=1, thetax=90, thetay=0): self.pos = pos self.sensortype = sensortype if isinstance( sensortype, str) else sensor_type(sensortype) self.h = h self.g = g self.rho = rho self.bet = bet self.igam = igam self.thetax = thetax self.thetay = thetay self._tran_dict = dict(n=self._n, n_t=self._n_t, n_tt=self._n_tt, n_x=self._n_x, n_y=self._n_y, n_xx=self._n_xx, n_yy=self._n_yy, n_xy=self._n_xy, P=self._p, p=self._p, U=self._u, u=self._u, V=self._v, v=self._v, W=self._w, w=self._w, U_t=self._u_t, u_t=self._u_t, V_t=self._v_t, v_t=self._v_t, W_t=self._w_t, w_t=self._w_t, X_p=self._x_p, x_p=self._x_p, Y_p=self._y_p, y_p=self._y_p, Z_p=self._z_p, z_p=self._z_p) def tran(self, w, theta=0, kw=None): ''' Return transfer functions based on linear wave theory of the system with input surface elevation, eta(x0,y0,t) = exp(i*(kx*x0+ky*y0-w*t)), and output, Y = Hw*Gwt*eta, determined by sensortype and position of sensor. Parameters ---------- w : array-like vector of angular frequencies in Rad/sec. Length Nf theta : array-like vector of directions in radians Length Nt (default 0) ( theta = 0 -> positive x axis theta = pi/2 -> positive y axis) kw : array-like vector of wave numbers corresponding to angular frequencies, w. Length Nf (default calculated with w2k) Returns ------- Hw = transfer function of frequency only (not direction) size 1 x Nf Gwt = transfer function of frequency and direction size Nt x Nf The complete transfer function Hwt = Hw*Gwt is a function of w (columns) and theta (rows) size Nt x Nf ''' if kw is None: # wave number as function of angular frequency kw, unusedkw2 = w2k(w, 0, self.h) w, theta, kw = np.atleast_1d(w, theta, kw) # make sure they have the correct orientation theta.shape = (-1, 1) kw.shape = (-1,) w.shape = (-1,) tran_fun = self._tran_dict[self.sensortype] Hw, Gwt = tran_fun(w, theta, kw) # New call to avoid singularities. pab 07.11.2000 # Set Hw to 0 for expressions w*hyperbolic_ratio(z*k,h*k,1,-1)= 0*inf ind = np.flatnonzero(1 - np.isfinite(Hw)) Hw.flat[ind] = 0 sgn = np.sign(Hw) k0 = np.flatnonzero(sgn < 0) if len(k0): # make sure Hw>=0 ie. transfer negative signs to Gwt Gwt[:, k0] = -Gwt[:, k0] Hw[:, k0] = -Hw[:, k0] if self.igam == 2: # pab 09 Oct.2002: bug fix # Changing igam by 2 should affect the directional result in the # same way that changing eta by -eta! Gwt = -Gwt return Hw, Gwt __call__ = tran #---Private member methods def _get_ee_cthxy(self, theta, kw): # convert from angle in degrees to radians bet = self.bet thxr = self.thetax * pi / 180 thyr = self.thetay * pi / 180 cthx = bet * cos(theta - thxr + pi / 2) #cthy = cos(theta-thyr-pi/2) cthy = bet * sin(theta - thyr) # Compute location complex exponential x, y, unused_z = list(self.pos) # exp(i*k(w)*(x*cos(theta)+y*sin(theta)) size Nt X Nf ee = exp((1j * (x * cthx + y * cthy)) * kw) return ee, cthx, cthy def _get_zk(self, kw): h = self.h z = self.pos[2] if self.igam == 1: # z measured positive upward from mean water level (default) zk = kw * (h + z) elif self.igam == 2: # z measured positive downward from mean water level zk = kw * (h - z) else: zk = kw * z # z measured positive upward from sea floor return zk #--- Surface elevation --- def _n(self, w, theta, kw): '''n = Eta = wave profile ''' ee, unused_cthx, unused_cthy = self._get_ee_cthxy(theta, kw) return np.ones_like(w), ee #---- Vertical surface velocity and acceleration----- def _n_t(self, w, theta, kw): ''' n_t = Eta_t ''' ee, unused_cthx, unused_cthy = self._get_ee_cthxy(theta, kw) return w, -1j * ee def _n_tt(self, w, theta, kw): '''n_tt = Eta_tt''' ee, unused_cthx, unused_cthy = self._get_ee_cthxy(theta, kw) return w ** 2, -ee #--- Surface slopes --- def _n_x(self, w, theta, kw): ''' n_x = Eta_x = x-slope''' ee, cthx, unused_cthy = self._get_ee_cthxy(theta, kw) return kw, 1j * cthx * ee def _n_y(self, w, theta, kw): ''' n_y = Eta_y = y-slope''' ee, unused_cthx, cthy = self._get_ee_cthxy(theta, kw) return kw, 1j * cthy * ee #--- Surface curvatures --- def _n_xx(self, w, theta, kw): ''' n_xx = Eta_xx = Surface curvature (x-dir)''' ee, cthx, unused_cthy = self._get_ee_cthxy(theta, kw) return kw ** 2, -(cthx ** 2) * ee def _n_yy(self, w, theta, kw): ''' n_yy = Eta_yy = Surface curvature (y-dir)''' ee, unused_cthx, cthy = self._get_ee_cthxy(theta, kw) return kw ** 2, -cthy ** 2 * ee def _n_xy(self, w, theta, kw): ''' n_xy = Eta_xy = Surface curvature (xy-dir)''' ee, cthx, cthy = self._get_ee_cthxy(theta, kw) return kw ** 2, -cthx * cthy * ee #--- Pressure--- def _p(self, w, theta, kw): ''' pressure fluctuations''' ee, unused_cthx, unused_cthy = self._get_ee_cthxy(theta, kw) hk = kw * self.h zk = self._get_zk(kw) # hyperbolic_ratio = cosh(zk)/cosh(hk) return self.rho * self.g * hyperbolic_ratio(zk, hk, 1, 1), ee #---- Water particle velocities --- def _u(self, w, theta, kw): ''' U = x-velocity''' ee, cthx, unused_cthy = self._get_ee_cthxy(theta, kw) hk = kw * self.h zk = self._get_zk(kw) # w*cosh(zk)/sinh(hk), cos(theta)*ee return w * hyperbolic_ratio(zk, hk, 1, -1), cthx * ee def _v(self, w, theta, kw): '''V = y-velocity''' ee, unused_cthx, cthy = self._get_ee_cthxy(theta, kw) hk = kw * self.h zk = self._get_zk(kw) # w*cosh(zk)/sinh(hk), sin(theta)*ee return w * hyperbolic_ratio(zk, hk, 1, -1), cthy * ee def _w(self, w, theta, kw): ''' W = z-velocity''' ee, unused_cthx, unused_cthy = self._get_ee_cthxy(theta, kw) hk = kw * self.h zk = self._get_zk(kw) # w*sinh(zk)/sinh(hk), -? return w * hyperbolic_ratio(zk, hk, -1, -1), -1j * ee #---- Water particle acceleration --- def _u_t(self, w, theta, kw): ''' U_t = x-acceleration''' ee, cthx, unused_cthy = self._get_ee_cthxy(theta, kw) hk = kw * self.h zk = self._get_zk(kw) # w^2*cosh(zk)/sinh(hk), ? return (w ** 2) * hyperbolic_ratio(zk, hk, 1, -1), -1j * cthx * ee def _v_t(self, w, theta, kw): ''' V_t = y-acceleration''' ee, unused_cthx, cthy = self._get_ee_cthxy(theta, kw) hk = kw * self.h zk = self._get_zk(kw) # w^2*cosh(zk)/sinh(hk), ? return (w ** 2) * hyperbolic_ratio(zk, hk, 1, -1), -1j * cthy * ee def _w_t(self, w, theta, kw): ''' W_t = z-acceleration''' ee, unused_cthx, unused_cthy = self._get_ee_cthxy(theta, kw) hk = kw * self.h zk = self._get_zk(kw) # w*sinh(zk)/sinh(hk), ? return (w ** 2) * hyperbolic_ratio(zk, hk, -1, -1), -ee #---- Water particle displacement --- def _x_p(self, w, theta, kw): ''' X_p = x-displacement''' ee, cthx, unused_cthy = self._get_ee_cthxy(theta, kw) hk = kw * self.h zk = self._get_zk(kw) # cosh(zk)./sinh(hk), ? return hyperbolic_ratio(zk, hk, 1, -1), 1j * cthx * ee def _y_p(self, w, theta, kw): ''' Y_p = y-displacement''' ee, unused_cthx, cthy = self._get_ee_cthxy(theta, kw) hk = kw * self.h zk = self._get_zk(kw) # cosh(zk)./sinh(hk), ? return hyperbolic_ratio(zk, hk, 1, -1), 1j * cthy * ee def _z_p(self, w, theta, kw): ''' Z_p = z-displacement''' ee, unused_cthx, unused_cthy = self._get_ee_cthxy(theta, kw) hk = kw * self.h zk = self._get_zk(kw) return hyperbolic_ratio(zk, hk, -1, -1), ee # sinh(zk)./sinh(hk), ee # def wave_pressure(z, Hm0, h=10000, g=9.81, rho=1028): # ''' # Calculate pressure amplitude due to water waves. # # Parameters # ---------- # z : array-like # depth where pressure is calculated [m] # Hm0 : array-like # significant wave height (same as the average of the 1/3'rd highest # waves in a seastate. [m] # h : real scalar # waterdepth (default 10000 [m]) # g : real scalar # acceleration of gravity (default 9.81 m/s**2) # rho : real scalar # water density (default 1028 kg/m**3) # # # Returns # ------- # p : ndarray # pressure amplitude due to water waves at water depth z. [Pa] # # PRESSURE calculate pressure amplitude due to water waves according to # linear theory. # # Example # ----- # >>> import pylab as plt # >>> z = -np.linspace(10,20) # >>> fh = plt.plot(z, wave_pressure(z, Hm0=1, h=20)) # >>> plt.show() # # See also # -------- # w2k # # # u = psweep.Fn*sqrt(mgf.length*9.81) # z = -10; h = inf; # Hm0 = 1.5;Tp = 4*sqrt(Hm0); # S = jonswap([],[Hm0,Tp]); # Hw = tran(S.w,0,[0 0 -z],'P',h) # Sm = S; # Sm.S = Hw.'.*S.S; # x1 = spec2sdat(Sm,1000); # pwave = pressure(z,Hm0,h) # # plot(psweep.x{1}/u, psweep.f) # hold on # plot(x1(1:100,1)-30,x1(1:100,2),'r') # ''' # # # Assume seastate with jonswap spectrum: # # Tp = 4 * np.sqrt(Hm0) # gam = jonswap_peakfact(Hm0, Tp) # Tm02 = Tp / (1.30301 - 0.01698 * gam + 0.12102 / gam) # w = 2 * np.pi / Tm02 # kw, unused_kw2 = w2k(w, 0, h) # # hk = kw * h # zk1 = kw * z # zk = hk + zk1 # z measured positive upward from mean water level (default) # zk = hk-zk1; % z measured positive downward from mean water level # zk1 = -zk1; # zk = zk1; % z measured positive upward from sea floor # # cosh(zk)/cosh(hk) approx exp(zk) for large h # hyperbolic_ratio(zk,hk,1,1) = cosh(zk)/cosh(hk) # pr = np.where(np.pi < hk, np.exp(zk1), hyperbolic_ratio(zk, hk, 1, 1)) # pr = hyperbolic_ratio(zk, hk, 1, 1) # pressure = (rho * g * Hm0 / 2) * pr # ## pos = [np.zeros_like(z),np.zeros_like(z),z] ## tf = TransferFunction(pos=pos, sensortype='p', h=h, rho=rho, g=g) ## Hw, Gwt = tf.tran(w,0) ## pressure2 = np.abs(Hw) * Hm0 / 2 # # return pressure def test_docstrings(): import doctest print('Testing docstrings in %s' % __file__) doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE) def main(): sensor_type(range(21)) if __name__ == '__main__': test_docstrings()