""" Models module ------------- Dispersion relation ------------------- k2w - Translates from wave number to frequency w2k - Translates from frequency to wave number Model spectra ------------- Bretschneider - Bretschneider spectral density. Jonswap - JONSWAP spectral density McCormick - McCormick spectral density. OchiHubble - OchiHubble bimodal spectral density model. Tmaspec - JONSWAP spectral density for finite water depth Torsethaugen - Torsethaugen double peaked (swell + wind) spectrum model Wallop - Wallop spectral density. demospec - Loads a precreated spectrum of chosen type jonswap_peakfact - Jonswap peakedness factor Gamma given Hm0 and Tp jonswap_seastate - jonswap seastate from windspeed and fetch Directional spreading functions ------------------------------- Spreading - Directional spreading function. """ #------------------------------------------------------------------------------- # Name: models # Purpose: Interface to various spectrum models # # Author: pab # # Created: 29.08.2008 # Copyright: (c) pab 2008 # Licence: #------------------------------------------------------------------------------- #!/usr/bin/env python from __future__ import division import warnings from scipy.interpolate import interp1d import scipy.optimize as optimize import scipy.integrate as integrate import scipy.special as sp from scipy.fftpack import fft #from scipy.misc import ppimport #import numpy as np from numpy import (inf, atleast_1d, newaxis, any, minimum, maximum, array, #@UnresolvedImport asarray, exp, log, sqrt, where, pi, arange, linspace, sin, cos, abs, sinh, #@UnresolvedImport isfinite, mod, expm1, tanh, cosh, finfo, ones, ones_like, isnan, #@UnresolvedImport zeros_like, flatnonzero, sinc, hstack, vstack, real, flipud, clip) #@UnresolvedImport from dispersion_relation import w2k #ppimport.enable() #_wafospectrum = ppimport.ppimport('wafo.spectrum') from core import SpecData1D sech = lambda x: 1.0/cosh(x) eps = finfo(float).eps __all__ = ['Bretschneider','Jonswap','Torsethaugen','Wallop','McCormick','OchiHubble', 'Tmaspec','jonswap_peakfact','jonswap_seastate','spreading', 'w2k','k2w','phi1'] # Model spectra def _gengamspec(wn, N=5, M=4): ''' Return Generalized gamma spectrum in dimensionless form Parameters ---------- wn : arraylike normalized frequencies, w/wp. N : scalar defining the decay of the high frequency part. M : scalar defining the spectral width around the peak. Returns ------- S : arraylike spectral values, same size as wn. The generalized gamma spectrum in non- dimensional form is defined as: S = G0.*wn.**(-N).*exp(-B*wn.**(-M)) for wn > 0 = 0 otherwise where B = N/M C = (N-1)/M G0 = B**C*M/gamma(C), Normalizing factor related to Bretschneider form Note that N = 5, M = 4 corresponds to a normalized Bretschneider spectrum. Examples -------- >>> import numpy as np >>> wn = np.linspace(0,4,5) >>> _gengamspec(wn, N=6, M=2) array([ 0. , 1.16765216, 0.17309961, 0.02305179, 0.00474686]) See also -------- Bretschneider Jonswap, Torsethaugen References ---------- Torsethaugen, K. (2004) "Simplified Double Peak Spectral Model for Ocean Waves" In Proc. 14th ISOPE ''' w = atleast_1d(wn) S = zeros_like(w) ##for w>0 # avoid division by zero k = flatnonzero(w>0.0) if k.size>0: B = N/M C = (N-1.0)/M # # A = Normalizing factor related to Bretschneider form # A = B**C*M/gamma(C) # S(k) = A*wn(k)**(-N)*exp(-B*wn(k)**(-M)) logwn = log(w.take(k)) logA = (C*log(B)+log(M)-sp.gammaln(C)) S.put(k,exp(logA-N*logwn-B*exp(-M*logwn))) return S class ModelSpectrum(object): def __init__(self, Hm0=7.0, Tp=11.0, **kwds): self.Hm0 = Hm0 self.Tp = Tp self.type = 'ModelSpectrum' def tospecdata(self, w=None, wc=None, nw=257): ''' Return SpecData1D object from ModelSpectrum Parameter --------- w : arraylike vector of angular frequencies used in the discretization of spectrum wc : scalar cut off frequency (default 33/Tp) nw : int number of frequencies Returns ------- S : SpecData1D object member attributes of model spectrum are copied to S.workspace ''' if w is None: if wc is None: wc = 33./self.Tp w = linspace(0,wc,nw) S = SpecData1D(self.__call__(w),w) try: h = self.h S.h = h except: pass S.labels.title = self.type + ' ' + S.labels.title S.workspace = self.__dict__.copy() return S def chk_seastate(self): ''' Check if seastate is valid ''' if self.Hm0<0: raise ValueError('Hm0 can not be negative!') if self.Tp<=0: raise ValueError('Tp must be positve!') if self.Hm0==0.0: warnings.warn('Hm0 is zero!') self._chk_extra_param() def _chk_extra_param(self): pass class Bretschneider(ModelSpectrum): ''' Bretschneider spectral density model Member variables ---------------- Hm0 : significant wave height (default 7 (m)) Tp : peak period (default 11 (sec)) N : scalar defining decay of high frequency part. (default 5) M : scalar defining spectral width around the peak. (default 4) Parameters ---------- w : array-like angular frequencies [rad/s] The Bretschneider spectrum is defined as S(w) = A * G0 * wn**(-N)*exp(-N/(M*wn**M)) where G0 = Normalizing factor related to Bretschneider form A = (Hm0/4)**2 / wp (Normalization factor) wn = w/wp wp = 2*pi/Tp, angular peak frequency This spectrum is a suitable model for fully developed sea, i.e. a sea state where the wind has been blowing long enough over a sufficiently open stretch of water, so that the high-frequency waves have reached an equilibrium. In the part of the spectrum where the frequency is greater than the peak frequency (w>wp), the energy distribution is proportional to w**-5. The spectrum is identical with ITTC (International Towing Tank Conference), ISSC (International Ship and Offshore Structures Congress) and Pierson-Moskowitz, wave spectrum given Hm0 and Tm01. It is also identical with JONSWAP when the peakedness factor, gamma, is one. For this spectrum, the following relations exist between the mean period Tm01 = 2*pi*m0/m1, the peak period Tp and the mean zero-upcrossing period Tz: Tm01 = 1.086*Tz, Tp = 1.408*Tz and Tp=1.2965*Tm01 Examples -------- >>> S = Bretschneider(Hm0=6.5,Tp=10) >>> S((0,1,2,3)) array([ 0. , 1.69350993, 0.06352698, 0.00844783]) See also -------- Jonswap, Torsethaugen ''' def __init__(self, Hm0=7.0, Tp=11.0, N=5, M=4, chk_seastate=True, **kwds): self.type = 'Bretschneider' self.Hm0 = Hm0 self.Tp = Tp self.N = N self.M = M if chk_seastate: self.chk_seastate() def __call__(self,wi): ''' Return Bretschnieder spectrum ''' w = atleast_1d(wi) if self.Hm0>0: wp = 2*pi/self.Tp wn = w/wp S = (self.Hm0/4.0)**2/wp * _gengamspec(wn,self.N,self.M) else: S = zeros_like(w) return S def jonswap_peakfact(Hm0,Tp): ''' Jonswap peakedness factor, gamma, given Hm0 and Tp Parameters ---------- Hm0 : significant wave height [m]. Tp : peak period [s] Returns ------- gamma : Peakedness parameter of the JONSWAP spectrum Details ------- A standard value for GAMMA is 3.3. However, a more correct approach is to relate GAMMA to Hm0 and Tp: D = 0.036-0.0056*Tp/sqrt(Hm0) gamma = exp(3.484*(1-0.1975*D*Tp**4/(Hm0**2))) This parameterization is based on qualitative considerations of deep water wave data from the North Sea, see Torsethaugen et. al. (1984) Here GAMMA is limited to 1..7. NOTE: The size of GAMMA is the common shape of Hm0 and Tp. Examples -------- >>> import pylab as plb >>> Tp,Hs = plb.meshgrid(range(4,8),range(2,6)) >>> gam = jonswap_peakfact(Hs,Tp) >>> Hm0 = plb.linspace(1,20) >>> Tp = Hm0 >>> [T,H] = plb.meshgrid(Tp,Hm0) >>> gam = jonswap_peakfact(H,T) >>> v = plb.arange(0,8) >>> h = plb.contourf(Tp,Hm0,gam,v);h=plb.colorbar() >>> Hm0 = plb.arange(1,11) >>> Tp = plb.linspace(2,16) >>> T,H = plb.meshgrid(Tp,Hm0) >>> gam = jonswap_peakfact(H,T) >>> h = plb.plot(Tp,gam.T) >>> h = plb.xlabel('Tp [s]') >>> h = plb.ylabel('Peakedness parameter') >>> plb.close('all') See also -------- jonswap ''' Hm0,Tp = atleast_1d(Hm0,Tp) x = Tp/sqrt(Hm0) gam = ones_like(x) k1 = flatnonzero(x<=5.14285714285714) if k1.size>0: # #limiting gamma to [1 7] xk = x.take(k1) D = 0.036-0.0056*xk # # approx 5.061*Hm0**2/Tp**4*(1-0.287*log(gam)) gam.put(k1,minimum(exp(3.484*( 1.0-0.1975*D*xk**4.0 ) ),7.0)) # # gamma return gam def jonswap_seastate(u10, fetch=150000., method='lewis', g=9.81, output='dict'): ''' Return Jonswap seastate from windspeed and fetch Parameters ---------- U10 : real scalar windspeed at 10 m above mean water surface [m/s] fetch : real scalar fetch [m] method : 'hasselman73' seastate according to Hasselman et. al. 1973 'hasselman76' seastate according to Hasselman et. al. 1976 'lewis' seastate according to Lewis and Allos 1990 g : real scalar accelaration of gravity [m/s**2] output : 'dict' or 'list' Returns ------- seastate: dict where Hm0 : significant wave height [m] Tp : peak period [s] gamma : jonswap peak enhancement factor. sigmaA, sigmaB : jonswap spectral width parameters. Ag : jonswap alpha, normalization factor. Example -------- >>> fetch = 10000; u10 = 10 >>> ss = jonswap_seastate(u10, fetch, output='dict') >>> ss {'Ag': 0.016257903375341734, 'Hm0': 0.51083679198275533, 'Tp': 2.7727680999585265, 'gamma': 2.4824142635861119, 'sigmaA': 0.075317331395172021, 'sigmaB': 0.091912084512251344} >>> S = Jonswap(**ss) >>> S.Hm0 0.51083679198275533 # Alternatively >>> ss1 = jonswap_seastate(u10, fetch, output='list') >>> S1 = Jonswap(*ss1) >>> S1.Hm0 0.51083679198275533 See also -------- Jonswap References ---------- Lewis, A. W. and Allos, R.N. (1990) JONSWAP's parameters: sorting out the inconscistencies. Ocean Engng, Vol 17, No 4, pp 409-415 Hasselmann et al. (1973) Measurements of Wind-Wave Growth and Swell Decay during the Joint North Sea Project (JONSWAP). Ergansungsheft, Reihe A(8), Nr. 12, Deutschen Hydrografischen Zeitschrift. Hasselmann et al. (1976) A parametric wave prediction model. J. phys. oceanogr. Vol 6, pp 200-228 ''' # The following formulas are from Lewis and Allos 1990: zeta = g*fetch/(u10**2) # dimensionless fetch, Table 1 #zeta = min(zeta, 2.414655013429281e+004) if method.startswith('h'): if method[-1]=='3': # Hasselman et.al (1973) A = 0.076*zeta**(-0.22) ny= 3.5*zeta**(-0.33) # dimensionless peakfrequency, Table 1 epsilon1 = 9.91e-8*zeta**1.1 # dimensionless surface variance, Table 1 else: # Hasselman et.al (1976) A = 0.0662*zeta**(-0.2) ny = 2.84*zeta**(-0.3) # dimensionless peakfrequency, Table 1 epsilon1 = 1.6e-7*zeta # dimensionless surface variance, Eq.4 sa = 0.07 sb = 0.09 gam = 3.3 else: A = 0.074*zeta**(-0.22) # Eq. 10 ny = 3.57*zeta**(-0.33) # dimensionless peakfrequency, Eq. 11 epsilon1 = 3.512e-4*A*ny**(-4.)*zeta**(-0.1) # dimensionless surface variance, Eq.12 sa = 0.05468*ny**(-0.32) # Eq. 13 sb = 0.078314*ny**(-0.16) # Eq. 14 gam = maximum(17.54*zeta**(-0.28384),1) # Eq. 15 Tp = u10/(ny*g) # Table 1 Hm0 = 4*sqrt(epsilon1)*u10**2./g # Table 1 if output[0]=='l': return Hm0,Tp,gam,sa,sb,A else: return dict(Hm0=Hm0,Tp=Tp,gamma=gam,sigmaA=sa,sigmaB=sb,Ag=A) class Jonswap(ModelSpectrum): ''' Jonswap spectral density model Member variables ---------------- Hm0 : significant wave height (default 7 (m)) Tp : peak period (default 11 (sec)) gamma : peakedness factor determines the concentraton of the spectrum on the peak frequency. Usually in the range 1 <= gamma <= 7. default depending on Hm0, Tp, see jonswap_peakedness) sigmaA : spectral width parameter for w1: N : scalar defining decay of high frequency part. (default 5) M : scalar defining spectral width around the peak. (default 4) method : String defining method used to estimate Ag when gamma>1 'integrate' : Ag = 1/gaussq(Gf*ggamspec(wn,N,M),0,wnc) (default) 'parametric': Ag = (1+f1(N,M)*log(gamma)**f2(N,M))/gamma 'custom' : Ag = Ag wnc : wc/wp normalized cut off frequency used when calculating Ag by integration (default 6) Parameters ---------- w : array-like angular frequencies [rad/s] Description ----------- The JONSWAP spectrum is defined as S(w) = A * Gf * G0 * wn**(-N)*exp(-N/(M*wn**M)) where G0 = Normalizing factor related to Bretschneider form A = Ag * (Hm0/4)**2 / wp (Normalization factor) Gf = j**exp(-.5*((wn-1)/s)**2) (Peak enhancement factor) wn = w/wp wp = angular peak frequency s = sigmaA for wn <= 1 sigmaB for 1 < wn j = gamma, (j=1, => Bretschneider spectrum) The JONSWAP spectrum is assumed to be especially suitable for the North Sea, and does not represent a fully developed sea. It is a reasonable model for wind generated sea when the seastate is in the so called JONSWAP range, i.e., 3.6*sqrt(Hm0) < Tp < 5*sqrt(Hm0) The relation between the peak period and mean zero-upcrossing period may be approximated by Tz = Tp/(1.30301-0.01698*gamma+0.12102/gamma) Examples --------- >>> import pylab as plb >>> S = Jonswap(Hm0=7, Tp=11,gamma=1) >>> w = plb.linspace(0,5) >>> h = plb.plot(w,S(w)) >>> S2 = Bretschneider(Hm0=7, Tp=11) >>> assert(all(abs(S(w)-S2(w))<1.e-7),'JONSWAP with gamma=1 differs from Bretscneider, should be equal!') >>> plb.close('all') See also -------- Bretschneider Tmaspec Torsethaugen References ----------- Torsethaugen et al. (1984) Characteristica for extreme Sea States on the Norwegian continental shelf. Report No. STF60 A84123. Norwegian Hydrodyn. Lab., Trondheim Hasselmann et al. (1973) Measurements of Wind-Wave Growth and Swell Decay during the Joint North Sea Project (JONSWAP). Ergansungsheft, Reihe A(8), Nr. 12, Deutschen Hydrografischen Zeitschrift. ''' def __init__(self, Hm0=7.0, Tp=11.0, gamma=None, sigmaA=0.07, sigmaB=0.09, Ag=None, N=5, M=4, method='integration', wnc=6.0, chk_seastate=True): self.type = 'Jonswap' self.Hm0 = Hm0 self.Tp = Tp self.N = N self.M = M self.sigmaA = sigmaA self.sigmaB = sigmaB self.gamma = gamma self.Ag = Ag self.method = method self.wnc = wnc if self.gamma==None or not isfinite(self.gamma) or self.gamma<1: self.gamma = jonswap_peakfact(Hm0,Tp) self._preCalculateAg() if chk_seastate: self.chk_seastate() def _chk_extra_param(self): Tp = self.Tp Hm0 = self.Hm0 gam = self.gamma outsideJonswapRange = Tp>5*sqrt(Hm0) or Tp<3.6*sqrt(Hm0) if outsideJonswapRange: txt0 = ''' Hm0,Tp is outside the JONSWAP range. The validity of the spectral density is questionable. ''' warnings.warn(txt0) if gam<1 or 7 < gam: txt = ''' The peakedness factor, gamma, is possibly too large. The validity of the spectral density is questionable. ''' warnings.warn(txt) def _localspec(self,wn): Gf = self.peak_e_factor(wn) return Gf*_gengamspec(wn,self.N, self.M) def _preCalculateAg(self): ''' PRECALCULATEAG Precalculate normalization. ''' if self.gamma==1: self.Ag = 1.0 self.method = 'parametric' elif self.Ag != None: self.method = 'custom' if self.Ag<=0: raise ValueError('Ag must be larger than 0!') elif self.method[0]=='i': # normalizing by integration self.method = 'integration' if self.wnc<1.0: raise ValueError('Normalized cutoff frequency, wnc, must be larger than one!') area1, unused_err1 = integrate.quad(self._localspec, 0, 1) area2, unused_err2 = integrate.quad(self._localspec, 1, self.wnc) area = area1 + area2 self.Ag = 1.0/area elif self.method[1]=='p': self.method = 'parametric' ## # Original normalization ## # NOTE: that Hm0**2/16 generally is not equal to intS(w)dw ## # with this definition of Ag if sa or sb are changed from the ## # default values N = self.N M = self.M gammai = self.gamma parametersOK = (3<=N and N<=50) or (2<=M and M <=9.5) and (1<= gammai and gammai<=20) if parametersOK: f1NM = 4.1*(N-2*M**0.28+5.3)**(-1.45*M**0.1+0.96) f2NM = (2.2*M**(-3.3) + 0.57)*N**(-0.58*M**0.37+0.53)-1.04*M**(-1.9)+0.94 self.Ag = (1+ f1NM*log(gammai)**f2NM)/gammai ### elseif N == 5 && M == 4, ### options.Ag = (1+1.0*log(gammai).**1.16)/gammai ### #options.Ag = (1-0.287*log(gammai)) ### options.normalizeMethod = 'Three' ### elseif N == 4 && M == 4, ### options.Ag = (1+1.1*log(gammai).**1.19)/gammai else: raise ValueError('Not knowing the normalization because N, M or peakedness parameter is out of bounds!') if self.sigmaA!=0.07 or self.sigmaB!=0.09: warnings.warn('Use integration to calculate Ag when sigmaA~=0.07 or sigmaB~=0.09') def peak_e_factor(self,wn): ''' PEAKENHANCEMENTFACTOR ''' w = maximum(atleast_1d(wn),0.0) sab = where(w>1,self.sigmaB,self.sigmaA) wnm12 = 0.5*((w-1.0)/sab)**2.0 Gf = self.gamma**(exp(-wnm12)) return Gf def __call__(self,wi): ''' JONSWAP spectral density ''' w = atleast_1d(wi) if (self.Hm0>0.0): N = self.N M = self.M wp = 2*pi/self.Tp wn = w/wp Ag = self.Ag Hm0 = self.Hm0 Gf = self.peak_e_factor(wn) S = ((Hm0/4.0)**2/wp*Ag)*Gf*_gengamspec(wn,N,M) else: S = zeros_like(w) return S def phi1(wi, h, g=9.81): ''' Factor transforming spectra to finite water depth spectra. CALL: tr = phi1(w,h) Input ----- w : arraylike angular frequency [rad/s] h : scalar water depth [m] g : scalar acceleration of gravity [m/s**2] Returns ------- tr : arraylike transformation factors Example: ------- Transform a JONSWAP spectrum to a spectrum for waterdepth = 30 m >>> S = Jonswap() >>> w = range(3.0) >>> S(w)*phi1(w,30.0) array([ 0. , 1.0358056 , 0.03796281]) Reference --------- Buows, E., Gunther, H., Rosenthal, W. and Vincent, C.L. (1985) 'Similarity of the wind wave spectrum in finite depth water: 1 spectral form.' J. Geophys. Res., Vol 90, No. C1, pp 975-986 ''' w = atleast_1d(wi) if h == inf: # % special case infinite water depth return ones_like(w) k1 = w2k(w,0,inf,g=g)[0] dw1 = 2.0*w/g # % dw/dk|h=inf k2 = w2k(w,0,h,g=g)[0] k2h = k2*h dw2 = where(k1!=0,dw1/(tanh(k2h)+k2h/cosh(k2h)**2.0),0) # dw/dk|h=h0 return where(k1!=0,(k1/k2)**3.0*dw2/dw1,0) class Tmaspec(Jonswap): ''' JONSWAP spectrum for finite water depth Member variables ---------------- h = water depth (default 42 [m]) g : acceleration of gravity [m/s**2] Hm0 = significant wave height (default 7 [m]) Tp = peak period (default 11 (sec)) gamma = peakedness factor determines the concentraton of the spectrum on the peak frequency. Usually in the range 1 <= gamma <= 7. default depending on Hm0, Tp, see getjonswappeakedness) sigmaA = spectral width parameter for w1: N = scalar defining decay of high frequency part. (default 5) M = scalar defining spectral width around the peak. (default 4) method = String defining method used to estimate Ag when gamma>1 'integrate' : Ag = 1/gaussq(Gf.*ggamspec(wn,N,M),0,wnc) (default) 'parametric': Ag = (1+f1(N,M)*log(gamma)^f2(N,M))/gamma 'custom' : Ag = Ag wnc = wc/wp normalized cut off frequency used when calculating Ag by integration (default 6) Parameters ---------- w : array-like angular frequencies [rad/s] Description ------------ The evaluated spectrum is S(w) = Sj(w)*phi(w,h) where Sj = jonswap spectrum phi = modification due to water depth The concept is based on a similarity law, and its validity is verified through analysis of 3 data sets from: TEXEL, MARSEN projects (North Sea) and ARSLOE project (Duck, North Carolina, USA). The data include observations at water depths ranging from 6 m to 42 m. Example -------- >>> import pylab as plb >>> w = plb.linspace(0,2.5) >>> S = Tmaspec(h=10,gamma=1) # Bretschneider spectrum Hm0=7, Tp=11 >>> o=plb.plot(w,S(w)) >>> o=plb.plot(w,S(w,h=21)) >>> o=plb.plot(w,S(w,h=42)) >>> plb.show() >>> plb.close('all') See also --------- Bretschneider, Jonswap, phi1, Torsethaugen References: Buows, E., Gunther, H., Rosenthal, W., and Vincent, C.L. (1985) 'Similarity of the wind wave spectrum in finite depth water: 1 spectral form.' J. Geophys. Res., Vol 90, No. C1, pp 975-986 Hasselman et al. (1973) Measurements of Wind-Wave Growth and Swell Decay during the Joint North Sea Project (JONSWAP). Ergansungsheft, Reihe A(8), Nr. 12, deutschen Hydrografischen Zeitschrift. ''' def __init__(self, Hm0=7.0, Tp=11.0, gamma=None, sigmaA=0.07, sigmaB=0.09, Ag=None, N=5, M=4, method='integration', wnc=6.0, chk_seastate=True, h=42, g=9.81): self.g = g self.h = h super(Tmaspec, self).__init__(Hm0,Tp,gamma,sigmaA,sigmaB,Ag,N,M,method,wnc,chk_seastate) self.type = 'TMA' def phi(self,w,h=None,g=None): if h==None: h = self.h if g==None: g = self.g return phi1(w,h,g) def __call__(self,w,h=None,g=None): jonswap = super(Tmaspec, self).__call__(w) return jonswap*self.phi(w,h,g) class Torsethaugen(ModelSpectrum): ''' Torsethaugen double peaked (swell + wind) spectrum model Member variables ---------------- Hm0 : significant wave height (default 7 (m)) Tp : peak period (default 11 (sec)) wnc : wc/wp normalized cut off frequency used when calculating Ag by integration (default 6) method : String defining method used to estimate normalization factors, Ag, in the the modified JONSWAP spectra when gamma>1 'integrate' : Ag = 1/quad(Gf.*gengamspec(wn,N,M),0,wnc) 'parametric': Ag = (1+f1(N,M)*log(gamma)**f2(N,M))/gamma Parameters ---------- w : array-like angular frequencies [rad/s] Description ----------- The double peaked (swell + wind) Torsethaugen spectrum is modelled as S(w) = Ss(w) + Sw(w) where Ss and Sw are modified JONSWAP spectrums for swell and wind peak, respectively. The energy is divided between the two peaks according to empirical parameters, which peak that is primary depends on parameters. The empirical parameters are found for classes of Hm0 and Tp, originating from a dataset consisting of 20 000 spectra divided into 146 different classes of Hm0 and Tp. (Data measured at the Statfjord field in the North Sea in a period from 1980 to 1989.) The range of the measured Hm0 and Tp for the dataset are from 0.5 to 11 meters and from 3.5 to 19 sec, respectively. Preliminary comparisons with spectra from other areas indicate that some of the empirical parameters are dependent on geographical location. Thus the model must be used with care for other areas than the North Sea and sea states outside the area where measured data are available. Example ------- >>> import pylab as plb >>> w = plb.linspace(0,4) >>> S = Torsethaugen(Hm0=6, Tp=8) >>> h=plb.plot(w,S(w),w,S.wind(w),w,S.swell(w)) See also -------- Bretschneider Jonswap References ---------- Torsethaugen, K. (2004) "Simplified Double Peak Spectral Model for Ocean Waves" In Proc. 14th ISOPE Torsethaugen, K. (1996) Model for a doubly peaked wave spectrum Report No. STF22 A96204. SINTEF Civil and Environm. Engineering, Trondheim Torsethaugen, K. (1994) 'Model for a doubly peaked spectrum. Lifetime and fatigue strength estimation implications.' International Workshop on Floating Structures in Coastal zone, Hiroshima, November 1994. Torsethaugen, K. (1993) 'A two peak wave spectral model.' In proceedings OMAE, Glasgow ''' def __init__(self, Hm0=7, Tp=11, method='integration', wnc=6, gravity=9.81, chk_seastate=True, **kwds): self.type = 'Torsethaugen' self.Hm0 = Hm0 self.Tp = Tp self.method = method self.wnc = wnc self.gravity = gravity self.wind = None self.swell = None if chk_seastate: self.chk_seastate() self._init_spec() def __call__(self,w): ''' TORSETHAUGEN spectral density ''' return self.wind(w)+self.swell(w) def _chk_extra_param(self): Hm0 = self.Hm0 Tp = self.Tp if Hm0>11 or Hm0>max((Tp/3.6)**2, (Tp-2)*12/11): txt0 = '''Hm0 is outside the valid range. The validity of the spectral density is questionable''' warnings.warn(txt0) if Tp>20 or Tp<3: txt1 = '''Tp is outside the valid range. The validity of the spectral density is questionable''' warnings.warn(txt1) def _init_spec(self): ''' Initialize swell and wind part of Torsethaugen spectrum ''' monitor = 0 Hm0 = self.Hm0 Tp = self.Tp gravity1 = self.gravity # m/s**2 min = minimum max = maximum # The parameter values below are found comparing the # model to average measured spectra for the Statfjord Field # in the Northern North Sea. Af = 6.6 #m**(-1/3)*sec AL = 2 #sec/sqrt(m) Au = 25 #sec KG = 35 KG0 = 3.5 KG1 = 1 # m r = 0.857 # 6/7 K0 = 0.5 #1/sqrt(m) K00 = 3.2 M0 = 4 B1 = 2 #sec B2 = 0.7 B3 = 3.0 #m S0 = 0.08 #m**2*s S1 = 3 #m # Preliminary comparisons with spectra from other areas indicate that # the parameters on the line below can be dependent on geographical location A10 = 0.7; A1 = 0.5; A20 = 0.6; A2 = 0.3; A3 = 6 Tf = Af*(Hm0)**(1.0/3.0) Tl = AL*sqrt(Hm0) # lower limit Tu = Au # upper limit #Non-dimensional scales # New call pab April 2005 El = min(max((Tf-Tp)/(Tf-Tl),0),1) #wind sea Eu = min(max((Tp-Tf)/(Tu-Tf),0),1) #Swell if Tp 0.1: print(' Spectrum for Wind dominated sea') else: print(' Spectrum for pure wind sea') else: #swell dominated seas # Primary peak (swell) Ns = K0*sqrt(Hm0)+K00 #high frequency exponent Ms = M0 #spectral width exponent Rps = min((1-A20)*exp(-(Eu/A2)**2)+A20,1) Hps = Rps*Hm0 # significant waveheight swell Tps = Tp # primary peak period # peak enhancement factor gammas = KG*(1+KG0*exp(-Hm0/KG1))*(2*pi/gravity1*Hm0/(Tf**2))**r*(1+A3*Eu) gammas = max(gammas,1) # Secondary peak (wind) Nw = Ns # high frequency exponent Mw = M0*(1-B2*exp(-Hm0/B3)) # spectral width exponent Rpw = sqrt(1-Rps**2) Hpw = Rpw*Hm0 # significant waveheight wind C = (Nw-1)/Mw B = Nw/Mw G0w = B**C*Mw/sp.gamma(C)#normalizing factor #G0w = exp(C*log(B)+log(Mw)-gammaln(C)) #G0w = Mw/((B)**(-C)*gamma(C)) if Hpw>0: Tpw = (16*S0*(1-exp(-Hm0/S1))*(0.4)**Nw/( G0w*Hpw**2))**(-1.0/(Nw-1.0)) else: Tpw = inf #Tpw = max(Tpw,2.5) gammaw = 1 if monitor: if Rpw > 0.1: print(' Spectrum for swell dominated sea') else: print(' Spectrum for pure swell sea') if monitor: if (3.6*sqrt(Hm0)<= Tp & Tp<=5*sqrt(Hm0)): print(' Jonswap range') print('Hm0 = %g' % Hm0) print('Ns, Ms = %g, %g Nw, Mw = %g, %g' % (Ns, Ms, Nw, Mw)) print('gammas = %g gammaw = ' % (gammas,gammaw)) print('Rps = %g Rpw = %g' % (Rps,Rpw)) print('Hps = %g Hpw = %g' % (Hps, Hpw)) print('Tps = %g Tpw = %g' % (Tps, Tpw)) #G0s=Ms/((Ns/Ms)**(-(Ns-1)/Ms)*gamma((Ns-1)/Ms )) #normalizing factor # Wind part self.wind = Jonswap(Hm0=Hpw, Tp=Tpw, gamma=gammaw, N=Nw, M=Mw, method=self.method, chk_seastate=False) # Swell part self.swell = Jonswap(Hm0=Hps, Tp=Tps, gamma=gammas, N=Ns, M=Ms, method=self.method, chk_seastate=False) class McCormick(Bretschneider): ''' McCormick spectral density model Member variables ---------------- Hm0 = significant wave height (default 7 (m)) Tp = peak period (default 11 (sec)) Tz = zero-down crossing period (default 0.8143*Tp) M = scalar defining spectral width around the peak. (default depending on Tp and Tz) Parameters ---------- w : array-like angular frequencies [rad/s] Description ----------- The McCormick spectrum parameterization is a modification of the Bretschneider spectrum and defined as S(w) = (M+1)*(Hm0/4)^2/wp*(wp./w)^(M+1)*exp(-(M+1)/M*(wp/w)^M) where Tp/Tz=(1+1/M)^(1/M)/gamma(1+1/M) Example: -------- >>> S = McCormick(Hm0=6.5,Tp=10) >>> S(range(4)) array([ 0. , 1.87865908, 0.15050447, 0.02994663]) See also -------- Bretschneider Jonswap, Torsethaugen References: ----------- M.E. McCormick (1999) "Application of the Generic Spectral Formula to Fetch-Limited Seas" Marine Technology Society, Vol 33, No. 3, pp 27-32 ''' def __init__(self, Hm0=7, Tp=11, Tz=None, M=None, chk_seastate=True): self.type = 'McCormick' self.Hm0 = Hm0 self.Tp = Tp if Tz==None: Tz = 0.8143*Tp self.Tz = Tz if chk_seastate: self.chk_seastate() if M==None and self.Hm0>0: self._TpdTz = Tp/Tz M = 1.0/optimize.fminbound(self._localoptfun,0.01,5) self.M = M self.N = M+1.0 def _localoptfun(self,x): #LOCALOPTFUN Local function to optimize. y = 1.0+x return (y**(x)/sp.gamma(y)-self._TpdTz)**2.0 class OchiHubble(ModelSpectrum): ''' OchiHubble bimodal spectral density model. Member variables ---------------- Hm0 : significant wave height (default 7 (m)) par : integer defining the parametrization (default 0) 0 : The most probable spectrum 1,2,...10 : gives 95% Confidence spectra The OchiHubble bimodal spectrum is modelled as S(w) = Ss(w) + Sw(w) where Ss and Sw are modified Bretschneider spectra for swell and wind peak, respectively. The OH spectrum is a six parameter spectrum, all functions of Hm0. The values of these parameters are determined from a analysis of data obtained in the North Atlantic. The source of the data is the same as that for the development of the Pierson-Moskowitz spectrum, but analysis is carried out on over 800 spectra including those in partially developed seas and those having a bimodal shape. From a statistical analysis of the data, a family of wave spectra consisting of 11 members is generated for a desired sea severity (Hm0) with the coefficient of 0.95. A significant advantage of using a family of spectra for design of marine systems is that one of the family members yields the largest response such as motions or wave induced forces for a specified sea severity, while another yields the smallest response with confidence coefficient of 0.95. Examples -------- >>> S = OchiHubble(par=2) >>> S(range(4)) array([ 0. , 0.90155636, 0.04185445, 0.00583207]) See also -------- Bretschneider, Jonswap, Torsethaugen References: ---------- Ochi, M.K. and Hubble, E.N. (1976) 'On six-parameter wave spectra.' In Proc. 15th Conf. Coastal Engng., Vol.1, pp301-328 ''' def __init__(self, Hm0=7, par=1, chk_seastate=True): self.type = 'Ochi Hubble' self.Hm0 = Hm0 self.Tp = 1 self.par = par self.wind = None self.swell = None if chk_seastate: self.chk_seastate() self._init_spec() def __call__(self,w): return self.wind(w)+self.swell(w) def _init_spec(self): hp = array([[0.84, 0.54], [0.84, 0.54], [0.84, 0.54], [0.84, 0.54], [0.84, 0.54], [0.95, 0.31], [0.65, 0.76], [0.90, 0.44], [0.77, 0.64], [0.73,0.68], [0.92, 0.39]]) wa = array([ [0.7, 1.15], [0.93, 1.5], [0.41, 0.88], [0.74, 1.3], [0.62, 1.03], [0.70, 1.50], [0.61, 0.94], [0.81, 1.60], [0.54, 0.61], [0.70, 0.99], [0.70, 1.37]]) wb = array([ [0.046, 0.039], [0.056, 0.046], [0.016, 0.026], [0.052, 0.039], [0.039, 0.030], [0.046, 0.046], [0.039, 0.036], [0.052, 0.033], [0.039, 0.000], [0.046, 0.039], [0.046, 0.039]]) Lpar = array([[3.00, 1.54,-0.062], [3.00, 2.77,-0.112], [2.55, 1.82,-0.089], [2.65, 3.90,-0.085], [2.60, 0.53,-0.069], [1.35, 2.48,-0.102], [4.95, 2.48,-0.102], [1.80, 2.95,-0.105], [4.50, 1.95,-0.082], [6.40, 1.78,-0.069], [0.70, 1.78,-0.069]]) Hm0 = self.Hm0 Lpari = Lpar[self.par] Li = hstack((Lpari[0],Lpari[1]*exp(Lpari[2]*Hm0))) Hm0i = hp[self.par]*Hm0 Tpi = 2*pi*exp(wb[self.par]*Hm0)/wa[self.par] Ni = 4*Li+1 Mi = [4, 4] self.swell = Bretschneider(Hm0=Hm0i[0], Tp=Tpi[0], N=Ni[0], M=Mi[0]) self.wind = Bretschneider(Hm0=Hm0i[1], Tp=Tpi[1], N=Ni[1], M=Mi[1]) def _chk_extra_param(self): if self.par<0 or 10>> S = Wallop(Hm0=6.5, Tp=10) >>> S(range(4)) array([ 0.00000000e+00, 9.36921871e-01, 2.76991078e-03, 7.72996150e-05]) See also -------- Bretschneider Jonswap, Torsethaugen References: ----------- Huang, N.E., Long, S.R., Tung, C.C, Yuen, Y. and Bilven, L.F. (1981) "A unified two parameter wave spectral model for a generous sea state" J. Fluid Mechanics, Vol.112, pp 203-224 ''' def __init__(self, Hm0=7, Tp=11, N=None, chk_seastate=True): self.type = 'Wallop' self.Hm0 = Hm0 self.Tp = Tp self.M = 4 if N is None: wp = 2.*pi/Tp kp = w2k(wp,0,inf)[0] # wavenumber at peak frequency Lp = 2.*pi/kp # wave length at the peak frequency N = abs((log(2.*pi**2.)+2*log(Hm0/4)-2.0*log(Lp))/log(2)) self.N = N if chk_seastate: self.chk_seastate() class Spreading(object): ''' Directional spreading function. Member variables ---------------- Returns -------- D = Directional spreading function returning S = D(theta,w,wc) where S is a Nt X Nw matrix with the principal direction always along the x-axis. Member varialbes ---------------- type = type of spreading function, see options below (default 'cos2s') 'cos2s' : cos-2s spreading N(S)*[cos((theta-theta0)/2)]**(2*S) (0 < S) 'box' : Box-car spreading N(A)*I( -A < theta-theta0 < A) (0 < A < pi) 'mises' : von Mises spreading N(K)*exp(K*cos(theta-theta0)) (0 < K) 'poisson': Poisson spreading N(X)/(1-2*X*cos(theta-theta0)+X**2) (0 < X < 1) 'sech2' : sech-2 spreading N(B)*sech(B*(theta-theta0))**2 (0 < B) 'wnormal': Wrapped Normal [1 + 2*sum exp(-(n*D1)^2/2)*cos(n*(theta-theta0))]/(2*pi) (0 < D1) (N(.) = normalization factor) (the first letter is enough for unique identification) theta0 = function handle, inline object, matrix or a scalar defining average direction given in radians at every angular frequency. (length 1 or length == length(wn)) (default 0) method = Defines function used for direcional spreading parameter: 0, None : S(wn) = spa, frequency independent 1, 'mitsuyasu': S(wn) frequency dependent (default) 2, 'donelan' : B(wn) frequency dependent 3, 'banner' : B(wn) frequency dependent S(wn) = spa *(wn)^ma, : wnlo <= wn < wnc = spb *(wn)^mb, : wnc <= wn < wnup = 0 : wnup <= wn B(wn) = S(wn) : wnlo <= wn < wnup = spb*wnup^mb : wnup <= wn, method = 2 = sc*F(wn) : wnup <= wn , method = 3 where F(wn) = 10^(-0.4+0.8393*exp(-0.567*log(wn^2))) and sc is scalefactor to make the spreading funtion continous. wnlimits = [wnlo wnc wnup] limits used in the function defining the directional spreading parameter. wnc is the normalized cutover frequency (default [0 1 inf]) sp = [spa,spb] maximum spread parameters (default [15 15]) m = [ma,mb] shape parameters (default [5 -2.5]) SPREADING Return function handle to a Directional spreading function. Here the S- or B-parameter, of the COS-2S and SECH-2 spreading function, respectively, is used as a measure of spread. All the parameters of the other distributions are related to this parameter through the first Fourier coefficient, R1, of the directional distribution as follows: R1 = S/(S+1) or S = R1/(1-R1). where Box-car spreading : R1 = sin(A)/A Von Mises spreading: R1 = besseli(1,K)/besseli(0,K), Poisson spreading : R1 = X sech-2 spreading : R1 = pi/(2*B*sinh(pi/(2*B)) Wrapped Normal : R1 = exp(-D1^2/2) A value of S = 15 corresponds to 'box' : A=0.62, 'sech2' : B=0.89 'mises' : K=8.3, 'poisson': X=0.94 'wnormal': D=0.36 The COS2S is the most frequently used spreading in engineering practice. Apart from the current meter/pressure cell data in WADIC all instruments seem to support the 'cos2s' distribution for heavier sea states, (Krogstad and Barstow, 1999). For medium sea states a spreading function between COS2S and POISSON seem appropriate, while POISSON seems appropriate for swell. For the COS2S Mitsuyasu et al. parameterized SPa = SPb = 11.5*(U10/Cp) where Cp = g/wp is the deep water phase speed at wp and U10 the wind speed at reference height 10m. Hasselman et al. (1980) parameterized mb = -2.33-1.45*(U10/Cp-1.17). Mitsuyasu et al. (1975) showed that SP for wind waves varies from 5 to 30 being a function of dimensionless wind speed. However, Goda and Suzuki (1975) proposed SP = 10 for wind waves, SP = 25 for swell with short decay distance and SP = 75 for long decay distance. Compared to experiments Krogstad et al. (1998) found that ma = 5 +/- eps and that -1< mb < -3.5. Values given in the litterature: [spa spb ma mb wlim(1:3) ] (Mitsuyasu: spa == spb) (cos-2s) [15 15 5 -2.5 0 1 3 ] (Hasselman: spa ~= spb) (cos-2s) [6.97 9.77 4.06 -2.3 0 1.05 3 ] (Banner : spa ~= spb) (sech2) [2.61 2.28 1.3 -1.3 0.56 0.95 1.6] Examples : >>> import pylab as plb >>> D = Spreading('cos2s',s_a=10.0) >>> w = plb.linspace(0,3,257) >>> theta = plb.linspace(-pi,pi,129) >>> t = plb.contour(D(theta,w)[0].squeeze()) # Make frequency dependent direction >>> theta0 = lambda w: w*plb.pi/6.0 >>> D2 = Spreading('cos2s',theta0=theta0) >>> t = plb.contour(D2(theta,w)[0]) # Plot all spreading functions >>> alltypes = ('cos2s','box','mises','poisson','sech2','wrap_norm') >>> for ix in range(len(alltypes)): ... D3 = Spreading(alltypes[ix]) ... t = plb.figure(ix) ... t = plb.contour(D3(theta,w)[0]) ... t = plb.title(alltypes[ix]) >>> plb.close('all') See also mkdspec, plotspec, spec2spec References Krogstad, H.E. and Barstow, S.F. (1999) "Directional Distributions in Ocean Wave Spectra" Proceedings of the 9th ISOPE Conference, Vol III, pp. 79-86 Goda, Y. (1999) "Numerical simulation of ocean waves for statistical analysis" Marine Tech. Soc. Journal, Vol. 33, No. 3, pp 5--14 Banner, M.L. (1990) "Equilibrium spectra of wind waves." J. Phys. Ocean, Vol 20, pp 966--984 Donelan M.A., Hamilton J, Hui W.H. (1985) "Directional spectra of wind generated waves." Phil. Trans. Royal Soc. London, Vol A315, pp 387--407 Hasselmann D, Dunckel M, Ewing JA (1980) "Directional spectra observed during JONSWAP." J. Phys. Ocean, Vol.10, pp 1264--1280 Mitsuyasu, H, et al. (1975) "Observation of the directional spectrum of ocean waves using a coverleaf buoy." J. Physical Oceanography, Vol.5, No.4, pp 750--760 Some of this might be included in help header: cos-2s: NB! The generally strong frequency dependence in directional spread makes it questionable to run load tests of ships and structures with a directional spread independent of frequency (Krogstad and Barstow, 1999). ''' ##% Parameterization of B ##% def = 2 Donelan et al freq. parametrization for 'sech2' ##% def = 3 Banner freq. parametrization for 'sech2' ##% (spa ~= spb) (sech-2) [2.61 2.28 1.3 -1.3 0.56 0.95 1.6] ## ## ##% Tested on: Matlab 7.0 ##% History: ##% revised pab jan 2007 ##% - renamed from spreading to mkspreading ##% - the function now return a function handle to the actual spreading function. ##% - removed wc, the cut over frequency -> input is now assumed as normalized frequency, w/wc. ##% revised pab 17.06.2001 ##% - added wrapped normal spreading ##% revised pab 6 April 2001 ##% - added fourier2distpar ##% - Fixed the normalization of sech2 spreading ##% revised by PAB and IR 1 April 2001: Introducing the azymuth as a ##% standard parameter in order to avoid rotations of the directions ##% theta. The x-axis is always pointing into the principal direction ##% as defined in the spreading function D(omega,theta). The actual ##% principal direction is defined by means of field D.phi. ##% revised es 06.06.2000, commented away: if ((ma==0) & (mb==0)), ..., ##% hoping that the check is unnecessary ##% revised pab 13.06.2000 ##% - fixed a serious bug: made sure -pi<= th-th0 <=pi ##% revised pab 16.02.2000 ##% -fixed default value for Hasselman parametrization ##% revised pab 02.02.2000 ##% - Nt or th may be specified + check on th ##% - added frequency dependence for sech-2 ##% - th0 as separate input ##% - updated header info ##% - changed check for nargins ##% - added the possibility of nan's in data vector ##% Revised by jr 2000.01.25 ##% - changed check of nargins ##% - frequency dependence only for cos-2s ##% - updated information ##% By es, jr 1999.11.25 def __init__(self,type='cos2s',theta0=0,method='mitsuyasu',s_a=15.,s_b=15.,m_a=5.,m_b=-2.5,wn_lo=0.0,wn_c=1.,wn_up=inf): self.type = type self.theta0 = theta0 self.method = method self.s_a = s_a self.s_b = s_b self.m_a = m_a self.m_b = m_b self.wn_lo = wn_lo self.wn_c = wn_c self.wn_up = wn_up methods = dict(n=None, m='mitsuyasu', d='donelan', b='banner') methodslist = (None, 'mitsuyasu', 'donelan', 'banner') if isinstance(self.method,str): if not self.method[0] in methods: raise ValueError('Unknown method') self.method = methods[self.method[0]] elif self.method == None: pass else: if method<0 or 3=1): raise ValueError('POISSON spreading: X value must be less than 1') return X def fourier2a(self,r1): ''' Returns the solution of R1 = sin(A)/A. ''' A0 = flipud(linspace(0,pi+0.1,1025)) funA = interp1d(sinc(A0/pi),A0) A0 = funA(r1.ravel()) A = asarray(A0) # Newton-Raphson da = ones_like(r1) max_count = 100 ix = flatnonzero(A) for unused_iy in range(max_count): Ai = A[ix] da[ix] = (sin(Ai) -Ai*r1[ix])/(cos(Ai)-r1[ix]) Ai = Ai - da[ix] # Make sure that the current guess is larger than zero and less than pi #x(ix) = xi + 0.1*(dx(ix) - 9*xi).*(xi<=0) + 0.38*(dx(ix)-6.2*xi +6.2).*(xi>pi) # Make sure that the current guess is larger than zero. A[ix] = Ai + 0.5*(da[ix] - Ai)*(Ai<=0.0) ix = flatnonzero((abs(da) > sqrt(eps)*abs(A))*(abs(da) > sqrt(eps))) if ix.size==0: if any(A>pi): raise ValueError('BOX-CAR spreading: The A value must be less than pi') return A.clip(min=1e-16,max=pi) warnings.warn('Newton raphson method did not converge.') return A.clip(min=1e-16) # Avoid division by zero def fourier2k(self, r1): ''' Returns the solution of R1 = besseli(1,K)/besseli(0,K), ''' K0 = hstack((linspace(0,10,513), linspace(10.00001,100))) fun0 = lambda x : sp.ive(1,x)/sp.ive(0,x) funK = interp1d(fun0(K0),K0) K0 = funK(r1.ravel()) k1 = flatnonzero(isnan(K0)) if (k1.size>0): K0[k1] = 0.0 K0[k1] = K0.max() ix0 = flatnonzero(r1!=0.0) K = zeros_like(r1) fun = lambda x : fun0(x)-r1[ix] for ix in ix0: K[ix] = optimize.fsolve(fun,K0[ix]) return K def fourier2b(self,r1): ''' Returns the solution of R1 = pi/(2*B*sinh(pi/(2*B)). ''' B0 = hstack((linspace(eps,5,513), linspace(5.0001,100))) funB = interp1d(self._r1ofsech2(B0),B0) B0 = funB(r1.ravel()) k1 = flatnonzero(isnan(B0)) if (k1.size>0): B0[k1] = 0.0 B0[k1] = max(B0) ix0 = flatnonzero(r1!=0.0) B = zeros_like(r1) fun = lambda x : 0.5*pi/(sinh(.5*pi/x))-x*r1[ix] for ix in ix0: B[ix] = abs(optimize.fsolve(fun,B0[ix])) return B def fourier2d(self,r1): ''' Returns the solution of R1 = exp(-D**2/2). ''' r = clip(r1,0.,1.0) return where(r<=0,inf,sqrt(-2.0*log(r))) def spread_par_s(self,wn): ''' Return spread parameter, S, of COS2S function Parameters ---------- wn : array_like normalized frequencies. Returns ------- S : ndarray spread parameter of COS2S functions ''' if self.method==None: # no frequency dependent spreading, # but possible frequency dependent direction s = atleast_1d(self.s_a) else: wn_lo = self.wn_lo wn_up = self.wn_up wn_c = self.wn_c spa = self.s_a spb = self.s_b ma = self.m_a mb = self.m_b # Mitsuyasu et. al and Hasselman et. al parametrization of # frequency dependent spreading s = where(wn<=wn_c,spa*wn**ma,spb*wn**mb) s[wn<=wn_lo] = 0.0 k = flatnonzero(wn_up0: if self.method[0]=='d': # Donelan et. al. parametrization for B in SECH-2 s[k] = spb*(wn_up)**mb # Convert to S-paramater in COS-2S distribution r1 = self.r1ofsech2(s) s = r1/(1.-r1) elif self.method[0]=='b': # Banner parametrization for B in SECH-2 s3m = spb*(wn_up)**mb s3p = self._donelan(wn_up) scale = s3m/s3p #% Scale so that parametrization will be continous s[k] = scale*self.donelan(wn[k]) r1 = self.r1ofsech2(s) #% Convert to S-paramater in COS-2S distribution s = r1/(1.-r1) else: s[k] = 0.0 if any(s<0): raise ValueError('The COS2S spread parameter, S(w), value must be larger than 0') return s def _donelan(self, wn): ''' High frequency decay of B of sech2 paramater ''' return 10.0**(-0.4+0.8393*exp(-0.567*log(wn**2))) def _r1ofsech2(self, B): ''' R1OFSECH2 Computes R1 = pi./(2*B.*sinh(pi./(2*B))) ''' realmax = finfo(float).max tiny = 1./realmax x = clip(2.*B,tiny,realmax) xk = pi/x return where(x<100.,xk/sinh(xk),-2.*xk/(exp(xk)*expm1(-2.*xk))) def test_some_spectra(): S = Jonswap() w = arange(3.0) S(w)*phi1(w,30.0) S1 = S.tospecdata(w) S1.plot() import pylab as plb w = plb.linspace(0,2.5) S = Tmaspec(h=10,gamma=1) # Bretschneider spectrum Hm0=7, Tp=11 plb.plot(w,S(w)) plb.plot(w,S(w,h=21)) plb.plot(w,S(w,h=42)) plb.show() plb.close('all') import pylab as plb #w = plb.linspace(0,3) w,th = plb.ogrid[0:4,0:6] k,k2 = w2k(w,th) k1,k12 = w2k(w,th,h=20) plb.plot(w,k,w,k2) plb.show() plb.close('all') w = plb.linspace(0,2,100) S = Torsethaugen(Hm0=6, Tp=8) plb.plot(w,S(w),w,S.wind(w),w,S.swell(w)) S1 = Jonswap(Hm0=7, Tp=11,gamma=1) w = plb.linspace(0,2,100) plb.plot(w,S1(w)) plb.show() plb.close('all') Hm0 = plb.arange(1,11) Tp = plb.linspace(2,16) T,H = plb.meshgrid(Tp,Hm0) gam = jonswap_peakfact(H,T) plb.plot(Tp,gam.T) plb.xlabel('Tp [s]') plb.ylabel('Peakedness parameter') Hm0 = plb.linspace(1,20) Tp = Hm0 [T,H] = plb.meshgrid(Tp,Hm0) gam = jonswap_peakfact(H,T) v = plb.arange(0,8) plb.contourf(Tp,Hm0,gam,v) plb.colorbar() plb.show() plb.close('all') def test_spreading(): import pylab as plb pi = plb.pi w = plb.linspace(0,3,257) theta = plb.linspace(-pi,pi,129) theta0 = lambda w: w*plb.pi/6.0 D2 = Spreading('cos2s',theta0=theta0) d1 =D2(theta,w)[0] t = plb.contour(d1.squeeze()) pi = plb.pi D = Spreading('wrap_norm',s_a=10.0) w = plb.linspace(0,3,257) theta = plb.linspace(-pi,pi,129) d1 = D(theta,w) plb.contour(d1[0]) plb.show() def main(): if False: # True: # test_some_spectra() else: import doctest doctest.testmod() if __name__ == '__main__': main()