PROGRAM sp2tthpdf C*********************************************************************** C This program computes upper and lower bounds for the: * C * C density of T= T_1+T_2 in a gaussian process i.e. * C * C wavelengthes for crests

h2 * C * C Sylvie and Igor 7 dec. 1999 * C*********************************************************************** use GLOBALDATA, only : Nt,Nj,Nd,Nc,Ntd,Ntdc,NI,Mb, & NIT,Nx,TWOPI,XSPLT,SCIS,NSIMmax,COV use rind IMPLICIT NONE double precision, dimension(:,:),allocatable :: BIG double precision, dimension(:,:),allocatable :: ansrup double precision, dimension(:,:),allocatable :: ansrlo double precision, dimension(: ),allocatable :: ex,CY1,CY2 double precision, dimension(:,:),allocatable :: xc double precision, dimension(:,:),allocatable ::fxind double precision, dimension(: ),allocatable :: h1,h2 double precision, dimension(: ),allocatable :: hh1,hh2 double precision, dimension(: ),allocatable :: R0,R1,R2 double precision ::CC,U,XddInf,XdInf,XtInf double precision, dimension(:,:),allocatable :: a_up,a_lo integer , dimension(: ),allocatable :: seed integer ,dimension(7) :: indI integer :: Ntime,N0,tn,ts,speed,ph,seed1,seed_size,Nx1,Nx2 integer :: icy,icy2 double precision :: ds,dT ! lag spacing for covariances ! DIGITAL: ! f90 -g2 -C -automatic -o ~/WAT/V4/sp2tthpdf.exe rind48.f sp2tthpdf.f ! SOLARIS: !f90 -g -O -w3 -Bdynamic -fixed -o ../sp2tthpdf.exe rind48.f sp2tthpdf.f !print *,'enter sp2thpdf' CALL INIT_LEVELS(U,Ntime,N0,NIT,speed,SCIS,seed1,Nx1,Nx2,dT) !print *,'U,Ntime,NIT,speed,SCIS,seed1,Nx,dT' !print *,U,Ntime,NIT,speed,SCIS,seed1,Nx,dT !Nx1=1 !Nx2=1 Nx=Nx1*Nx2 !print *,'NN',Nx1,Nx2,Nx !XSPLT=1.5d0 if (SCIS.GT.0) then allocate(COV(1:Nx)) call random_seed(SIZE=seed_size) allocate(seed(seed_size)) call random_seed(GET=seed(1:seed_size)) ! get current seed seed(1)=seed1 ! change seed call random_seed(PUT=seed(1:seed_size)) deallocate(seed) endif CALL INITDATA(speed) !print *,ntime,speed,u,NIT allocate(R0(1:Ntime+1)) allocate(R1(1:Ntime+1)) allocate(R2(1:Ntime+1)) allocate(h1(1:Nx1)) allocate(h2(1:Nx2)) CALL INIT_AMPLITUDES(h1,Nx1,h2,Nx2) CALL INIT_COVARIANCES(Ntime,R0,R1,R2) allocate(hh1(1:Nx)) allocate(hh2(1:Nx)) !h transformation do icy=1,Nx1 do icy2=1,Nx2 hh1((icy-1)*Nx2+icy2)=h1(icy); hh2((icy-1)*Nx2+icy2)=h2(icy2); enddo enddo Nj=0 indI(1)=0 C ***** The bound 'infinity' is set to 10*sigma ***** XdInf=10.d0*SQRT(-R2(1)) XtInf=10.d0*SQRT(R0(1)) !h1(1)=XtInf !h2(1)=XtInf ! normalizing constant CC=TWOPI*SQRT(-R0(1)/R2(1))*exp(u*u/(2.d0*R0(1)) ) allocate(CY1(1:Nx)) allocate(CY2(1:Nx)) do icy=1,Nx CY1(icy)=exp(-0.5*hh1(icy)*hh1(icy)/100)/(10*sqrt(twopi)) CY2(icy)=exp(-0.5*hh2(icy)*hh2(icy)/100)/(10*sqrt(twopi)) enddo !print *,CY1 allocate(ansrup(1:Ntime,1:Nx)) allocate(ansrlo(1:Ntime,1:Nx)) ansrup=0.d0 ansrlo=0.d0 allocate(fxind(1:Nx,1:2)) !fxind=0.d0 this is not needed !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Y={X(t2)..,X(ts),..X(tn-1)||X'(ts) X'(t1) X'(tn)||Y1 Y2 X(ts) X(t1) X(tn)} !! ! = [Xt Xd Xc] !! ! !! ! Nt=tn-2, Nd=3, Nc=2+3 !! ! !! ! Xt= contains Nt time points in the indicator function !! ! Xd= " Nd derivatives !! ! Xc= " Nc variables to condition on !! ! (Y1,Y2) dummy variables ind. of all other v. inputing h1,h2 into rindd !! ! !! ! There are 6 ( NI=7) regions with constant bariers: !! ! (indI(1)=0); for i\in (indI(1),indI(2)] u0 (deriv. X'(t1)) !! ! (indI(6)=Nt+2); for i\in (indI(6),indI(7)], Y(i)>0 (deriv. X'(tn)) !! ! (indI(7)=Nt+3); NI=7. !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! NI=7; Nd=3 Nc=5; Mb=3 allocate(a_up(1:Mb,1:(NI-1))) allocate(a_lo(1:Mb,1:(NI-1))) a_up=0.d0 a_lo=0.d0 allocate(BIG(1:(Ntime+Nc+1),1:(Ntime+Nc+1))) ALLOCATE(xc(1:Nc,1:Nx)) allocate(ex(1:(Ntime+Nc+1))) !print *,size(ex),Ntime ex=0.d0 !print *,size(ex),ex xc(1,1:Nx)=hh1(1:Nx) xc(2,1:Nx)=hh2(1:Nx) xc(3,1:Nx)=u xc(4,1:Nx)=u xc(5,1:Nx)=u ! upp- down- upp-crossings at t1,ts,tn a_lo(1,1)=u a_up(1,2)=XtInf ! X(ts) is redundant a_lo(1,2)=-Xtinf a_up(1,3)=u a_lo(1,4)=-XdInf a_up(1,5)= XdInf a_up(1,6)= XdInf a_up(2,1)=1.d0 a_lo(3,3)=1.d0 !signe a voir!!!!!! ! print *,a_up ! print *,a_lo do tn=N0,Ntime,1 ! do tn=Ntime,Ntime,1 Ntd=tn+1 Nt=Ntd-Nd Ntdc=Ntd+Nc indI(4)=Nt indI(5)=Nt+1 indI(6)=Nt+2 indI(7)=Ntd if (SCIS.gt.0) then if (SCIS.EQ.2) then Nj=max(Nt,0) else Nj=min(max(Nt-5, 0),0) endif endif do ts=3,tn-2 !print *,'ts,tn' ,ts,tn,Ntdc CALL COV_INPUT(Big(1:Ntdc,1:Ntdc),tn,ts,R0,R1,R2)!positive wave period indI(2)=ts-2 indI(3)=ts-1 CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex(1:Ntdc), & xc,indI,a_lo,a_up) ds=dt do icy=1,Nx ! ansr(tn,:)=ansr(tn,:)+fxind*CC*ds./(CY1.*CY2) ansrup(tn,icy)=ansrup(tn,icy)+fxind(icy,1)*CC*ds & /(CY1(icy)*CY2(icy)) ansrlo(tn,icy)=ansrlo(tn,icy)+fxind(icy,2)*CC*ds & /(CY1(icy)*CY2(icy)) enddo enddo ! ts print *,'Ready: ',tn,' of ',Ntime enddo !tn 300 open (unit=11, file='dens.out', STATUS='unknown') do ts=1,Ntime do ph=1,Nx write(11,*) ansrup(ts,ph),ansrlo(ts,ph)!,hh1(ph),hh2(ph) ! write(11,111) ansrup(ts,ph),ansrlo(ts,ph) enddo enddo !111 FORMAT(2x,F12.8) close(11) 900 deallocate(big) deallocate(fxind) deallocate(ansrup) deallocate(ansrlo) deallocate(xc) deallocate(ex) deallocate(R0) deallocate(R1) deallocate(R2) if (allocated(COV) ) then deallocate(COV) endif deallocate(h1) deallocate(h2) deallocate(hh1) deallocate(hh2) deallocate(a_up) deallocate(a_lo) stop !return CONTAINS SUBROUTINE INIT_LEVELS & (U,Ntime,N0,NIT,speed,SCIS,seed1,Nx1,Nx2,dT) IMPLICIT NONE integer, intent(out):: Ntime,N0,NIT,speed,Nx1,Nx2,SCIS,seed1 double precision ,intent(out) :: U,dT OPEN(UNIT=14,FILE='reflev.in',STATUS= 'UNKNOWN') READ (14,*) U READ (14,*) Ntime READ (14,*) N0 READ (14,*) NIT READ (14,*) speed READ (14,*) SCIS READ (14,*) seed1 READ (14,*) Nx1,Nx2 READ (14,*) dT if (Ntime.lt.3) then print *,'The number of wavelength points is too small, stop' stop end if CLOSE(UNIT=14) RETURN END SUBROUTINE INIT_LEVELS C****************************************************** SUBROUTINE INIT_AMPLITUDES(h1,Nx1,h2,Nx2) IMPLICIT NONE double precision, dimension(:), intent(out) :: h1,h2 integer, intent(in) :: Nx1,Nx2 integer :: ix OPEN(UNIT=4,FILE='h.in',STATUS= 'UNKNOWN') C C Reading in amplitudes C do ix=1,Nx1 READ (4,*) H1(ix) enddo do ix=1,Nx2 READ (4,*) H2(ix) enddo CLOSE(UNIT=4) RETURN END SUBROUTINE INIT_AMPLITUDES C************************************************** C*********************************************************************** C*********************************************************************** SUBROUTINE INIT_COVARIANCES(Ntime,R0,R1,R2) IMPLICIT NONE double precision, dimension(:),intent(out) :: R0,R1,R2 integer,intent(in) :: Ntime integer :: i open (unit=1, file='Cd0.in',STATUS='unknown') open (unit=2, file='Cd1.in',STATUS='unknown') open (unit=3, file='Cd2.in',STATUS='unknown') do i=1,Ntime read(1,*) R0(i) read(2,*) R1(i) read(3,*) R2(i) enddo close(1) close(2) close(3) return END SUBROUTINE INIT_COVARIANCES C*********************************************************************** C*********************************************************************** C********************************************************************** SUBROUTINE COV_INPUT(BIG,tn,ts, R0,R1,R2) IMPLICIT NONE double precision, dimension(:,:),intent(inout) :: BIG double precision, dimension(:),intent(in) :: R0,R1,R2 integer ,intent(in) :: tn,ts integer :: i,j,Ntd1,N !=Ntdc double precision :: tmp ! the order of the variables in the covariance matrix ! are organized as follows: ! ! ||X(t2)..X(ts),..X(tn-1)||X'(ts) X'(t1) X'(tn)||Y1 Y2 X(ts) X(t1) X(tn)|| ! = [Xt Xd Xc] ! where ! ! Xt= time points in the indicator function ! Xd= derivatives ! Xc=variables to condition on ! Computations of all covariances follows simple rules: Cov(X(t),X(s))=r(t,s), ! then Cov(X'(t),X(s))=dr(t,s)/dt. Now for stationary X(t) we have ! a function r(tau) such that Cov(X(t),X(s))=r(s-t) (or r(t-s) will give the same result). ! ! Consequently Cov(X'(t),X(s)) = -r'(s-t) = -sign(s-t)*r'(|s-t|) ! Cov(X'(t),X'(s)) = -r''(s-t) = -r''(|s-t|) ! Cov(X''(t),X'(s)) = r'''(s-t) = sign(s-t)*r'''(|s-t|) ! Cov(X''(t),X(s)) = r''(s-t) = r''(|s-t|) ! Cov(X''(t),X''(s)) = r''''(s-t) = r''''(|s-t|) Ntd1=tn+1 N=Ntd1+Nc do i=1,tn-2 !cov(Xt) do j=i,tn-2 BIG(i,j) = R0(j-i+1) ! cov(X(ti+1),X(tj+1)) enddo !cov(Xt,Xc) BIG(i ,Ntd1+1) = 0.d0 !cov(X(ti+1),Y1) BIG(i ,Ntd1+2) = 0.d0 !cov(X(ti+1),Y2) BIG(i ,Ntd1+4) = R0(i+1) !cov(X(ti+1),X(t1)) BIG(tn-1-i ,Ntd1+5) = R0(i+1) !cov(X(t.. ),X(tn)) !Cov(Xt,Xd)=cov(X(ti+1),x(tj) BIG(i,Ntd1-1) =-R1(i+1) !cov(X(ti+1),X'(t1)) BIG(tn-1-i,Ntd1)= R1(i+1) !cov(X(ti+1),X'(tn)) enddo !cov(Xd) BIG(Ntd1 ,Ntd1 ) = -R2(1) BIG(Ntd1-1,Ntd1 ) = -R2(tn) !cov(X'(t1),X'(tn)) BIG(Ntd1-1,Ntd1-1) = -R2(1) BIG(Ntd1-2,Ntd1-1) = -R2(ts) !cov(X'(ts),X'(t1)) BIG(Ntd1-2,Ntd1-2) = -R2(1) BIG(Ntd1-2,Ntd1 ) = -R2(tn+1-ts) !cov(X'(ts),X'(tn)) !cov(Xc) BIG(Ntd1+1,Ntd1+1) = 100.d0 ! cov(Y1 Y1) BIG(Ntd1+1,Ntd1+2) = 0.d0 ! cov(Y1 Y2) BIG(Ntd1+1,Ntd1+3) = 0.d0 ! cov(Y1 X(ts)) BIG(Ntd1+1,Ntd1+4) = 0.d0 ! cov(Y1 X(t1)) BIG(Ntd1+1,Ntd1+5) = 0.d0 ! cov(Y1 X(tn)) BIG(Ntd1+2,Ntd1+2) = 100.d0 ! cov(Y2 Y2) BIG(Ntd1+2,Ntd1+3) = 0.d0 ! cov(Y2 X(ts)) BIG(Ntd1+2,Ntd1+4) = 0.d0 ! cov(Y2 X(t1)) BIG(Ntd1+2,Ntd1+5) = 0.d0 ! cov(Y2 X(tn)) BIG(Ntd1+3,Ntd1+3) = R0(1) ! cov(X(ts),X (ts) BIG(Ntd1+3,Ntd1+4) = R0(ts) ! cov(X(ts),X (t1)) BIG(Ntd1+3,Ntd1+5) = R0(tn+1-ts) ! cov(X(ts),X (tn)) BIG(Ntd1+4,Ntd1+4) = R0(1) ! cov(X(t1),X (t1)) BIG(Ntd1+4,Ntd1+5) = R0(tn) ! cov(X(t1),X (tn)) BIG(Ntd1+5,Ntd1+5) = R0(1) ! cov(X(tn),X (tn)) !cov(Xd,Xc) BIG(Ntd1 ,Ntd1+1) = 0.d0 !cov(X'(tn),Y1) BIG(Ntd1 ,Ntd1+2) = 0.d0 !cov(X'(tn),Y2) BIG(Ntd1-1 ,Ntd1+1) = 0.d0 !cov(X'(t1),Y1) BIG(Ntd1-1 ,Ntd1+2) = 0.d0 !cov(X'(t1),Y2) BIG(Ntd1-2 ,Ntd1+1) = 0.d0 !cov(X'(ts),Y1) BIG(Ntd1-2 ,Ntd1+2) = 0.d0 !cov(X'(ts),Y2) BIG(Ntd1 ,Ntd1+4) = R1(tn) !cov(X'(tn),X(t1)) BIG(Ntd1 ,Ntd1+5) = 0.d0 !cov(X'(tn),X(tn)) BIG(Ntd1-1,Ntd1+4) = 0.d0 !cov(X'(t1),X(t1)) BIG(Ntd1-1,Ntd1+5) =-R1(tn) !cov(X'(t1),X(tn)) BIG(Ntd1 ,Ntd1+3) = R1(tn+1-ts) !cov(X'(tn),X (ts)) BIG(Ntd1-1,Ntd1+3) =-R1(ts) !cov(X'(t1),X (ts)) BIG(Ntd1-2,Ntd1+3) = 0.d0 !cov(X'(ts),X (ts) BIG(Ntd1-2,Ntd1+4) = R1(ts) !cov(X'(ts),X (t1)) BIG(Ntd1-2,Ntd1+5) = -R1(tn+1-ts) !cov(X'(ts),X (tn)) do i=1,tn-2 j=abs(i+1-ts) !cov(Xt,Xc) BIG(i,Ntd1+3) = R0(j+1) !cov(X(ti+1),X(ts)) !Cov(Xt,Xd) if ((i+1-ts).lt.0) then BIG(i,Ntd1-2) = R1(j+1) else !cov(X(ti+1),X'(ts)) BIG(i,Ntd1-2) = -R1(j+1) endif enddo ! make lower triangular part equal to upper do j=1,N-1 do i=j+1,N tmp =BIG(j,i) BIG(i,j)=tmp enddo enddo C write (*,10) ((BIG(j,i),i=N+1,N+6),j=N+1,N+6) C 10 format(6F8.4) RETURN END SUBROUTINE COV_INPUT SUBROUTINE COV_INPUT2(BIG,pt, R0,R1,R2) IMPLICIT NONE double precision, dimension(:,:), intent(out) :: BIG double precision, dimension(:), intent(in) :: R0,R1,R2 integer :: pt,i,j ! the order of the variables in the covariance matrix ! are organized as follows; ! X(t2)...X(tn-1) X'(t1) X'(tn) X(t1) X(tn) = [Xt Xd Xc] ! ! where Xd is the derivatives ! ! Xt= time points in the indicator function ! Xd= derivatives ! Xc=variables to condition on !cov(Xc) BIG(pt+2,pt+2) = R0(1) BIG(pt+1,pt+1) = R0(1) BIG(pt+1,pt+2) = R0(pt) !cov(Xd) BIG(pt,pt) = -R2(1) BIG(pt-1,pt-1) = -R2(1) BIG(pt-1,pt) = -R2(pt) !cov(Xd,Xc) BIG(pt,pt+2) = 0.d0 BIG(pt,pt+1) = R1(pt) BIG(pt-1,pt+2) = -R1(pt) BIG(pt-1,pt+1) = 0.d0 if (pt.GT.2) then !cov(Xt) do i=1,pt-2 do j=i,pt-2 BIG(i,j) = R0(j-i+1) enddo enddo !cov(Xt,Xc) do i=1,pt-2 BIG(i,pt+1) = R0(i+1) BIG(pt-1-i,pt+2) = R0(i+1) enddo !Cov(Xt,Xd)=cov(X(ti+1),x(tj)) do i=1,pt-2 BIG(i,pt-1) = -R1(i+1) BIG(pt-1-i,pt)= R1(i+1) enddo endif ! make lower triangular part equal to upper do j=1,pt+1 do i=j+1,pt+2 BIG(i,j)=BIG(j,i) enddo enddo C write (*,10) ((BIG(j,i),i=N+1,N+6),j=N+1,N+6) C 10 format(6F8.4) RETURN END SUBROUTINE COV_INPUT2 END PROGRAM sp2tthpdf